Synopsis: Earth Wobble Rings True

A laser gyroscope measures extremely low-frequency wobbles in the Earth’s rotation.

The direction of Earth’s axis is not fixed, but instead wobbles by a tiny fraction of a degree. Astronomers track this change by continuously monitoring the position of distant quasars in the sky. But now Ulrich Schreiber of the Technical University of Munich and his colleagues, reporting in Physical Review Letters, have, for the first time, measured the wobble in a lab with a ring laser.

A ring laser is basically a laser cavity that has been bent around into a square or triangle loop, with mirrors at each corner. Laser light will travel around the ring in both directions. However, if the ring is rotating, then light moving in the same direction will have farther to go to complete a loop than light moving in the opposite direction. This travel difference causes a measurable frequency shift between the counterpropagating beams.

Ring laser gyroscopes are commonly used in aircraft, but the systems typically are not stable enough with respect to environmental fluctuations to measure the long-period changes in the Earth’s axis. To address this instability, the authors constructed a 4-meter by 4-meter square ring—the “Gross Ring”—out of zerodur, a ceramic glass with very low thermal expansion. Using data from spring 2010, the team extracted the signal of the dominant Chandler wobble, which is a 435-day free oscillation of the Earth due to pressure fluctuations at the sea floor and wind activities around the Earth. This shows that ring lasers could provide an alternative to costly astronomical methods of studying the Earth’s rotation. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsInterdisciplinary Physics

Previous Synopsis

Quantum Information

Eve Fools Alice and Bob

Read More »

Next Synopsis

Particles and Fields

Not So Fast

Read More »

Related Articles

Focus: Modeling Imperfections Boosts Microscope Precision
Optics

Focus: Modeling Imperfections Boosts Microscope Precision

A theoretical model of light spreading and scattering improves precision of position and size measurements made with an optical microscope by as much as 100 times. Read More »

Synopsis: Attosecond X-Ray Flashes
Optics

Synopsis: Attosecond X-Ray Flashes

X-ray free-electron lasers have been used to generate single spikes of hard x rays that are only 200 attoseconds long. Read More »

Focus: Drops Falling in Clouds Make More Drops
Fluid Dynamics

Focus: Drops Falling in Clouds Make More Drops

Experiments with a simplified version of the atmosphere show that falling drops seed many smaller droplets in their wake. Read More »

More Articles