Synopsis: The Bound and the Free

Precisely prepared photon states can probe quantum statistical phenomena and generate intriguing forms of quantum entanglement.
Synopsis figure
J. DiGuglielmo et al., Phys. Rev. Lett. (2011)

One of the strangest of the strange manifestations of quantum mechanics is entanglement, a condition in which the states of distant objects can be intimately correlated. In practical terms, entanglement is viewed as a means to rapid solution of some hard computational problems by quantum computing. During the 1990s, theorists proposed that entanglement actually comes in two flavors: “bound” entanglement, such as the entangled singlet state of two spin-1/2 particles that cannot be reduced to any simpler form, and “free” entanglement, in which a complex entangled state can be distilled down into a more basic set of states. In recent years, claims of experimental confirmation of bound entanglement have been made, but these are controversial. Writing in Physical Review Letters, James DiGuglielmo at Leibniz University, Germany, and colleagues report their experiments on unconditional preparation of bound states of light.

Previous experiments have typically examined correlations with “postselection” methods to filter desired events from an initial distribution, however, DiGuglielmo et al. have designed a system to deterministically and precisely prepare their entangled states. The authors create four continuous-variable entangled laser fields with optical parametric amplifiers and verify that they have created bound entangled states by means of high-efficiency detectors to measure the correlations. The system offers not only technological utility in preparing exact states for future experiments, but the research team also provides a tool for studying irreversibility at the quantum level to better characterize the connections between quantum information and thermodynamics. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Particles and Fields

Gamma Rays Carry No Trace of Dark Matter

Read More »

Related Articles

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Viewpoint: Type-II Dirac Fermions Spotted
Quantum Information

Viewpoint: Type-II Dirac Fermions Spotted

Three separate groups report experimental evidence of novel type-II Dirac quasiparticles, suggesting possible applications in future quantum technology. Read More »

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

More Articles