Synopsis

The More the Merrier…and Heavier

Physics 5, s7
Experimentalists make considerable progress towards sustained production of superheavy elements.

Where does the periodic table end? Extending the periodic table to the artificially synthesized superheavy elements is one of the most fascinating avenues of nuclear research, offering sensitive tests of theories of nuclear physics and chemistry (see 9 April 2010 Viewpoint). The difficulties to overcome are not only that the experiments last several months, but also that at the end, they typically produce few, of the order of two or three, superheavy nuclei.

Writing in Physical Review Letters, Yuri Oganessian at the Joint Institute for Nuclear Research, Russia, and collaborators report on results from the bombardment of a radioactive americum- 243 target by calcium- 48 projectiles. After a run lasting four months, they have produced twenty-two nuclei of element 115. The high yield was achieved by optimizing beam energy and detection performance as well as by increasing beam dose. This is an improvement of more than twice the previous yields of such nuclei. Apart from the technical feat of the substantially enhanced production of this superheavy nucleus, the results from this experiment provide a wealth of information on how such superheavy elements decay, with consequences for nuclear structure physics and stability in general. – Abhishek Agarwal


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles