Synopsis: The More the Merrier…and Heavier

Experimentalists make considerable progress towards sustained production of superheavy elements.

Where does the periodic table end? Extending the periodic table to the artificially synthesized superheavy elements is one of the most fascinating avenues of nuclear research, offering sensitive tests of theories of nuclear physics and chemistry (see 9 April 2010 Viewpoint). The difficulties to overcome are not only that the experiments last several months, but also that at the end, they typically produce few, of the order of two or three, superheavy nuclei.

Writing in Physical Review Letters, Yuri Oganessian at the Joint Institute for Nuclear Research, Russia, and collaborators report on results from the bombardment of a radioactive americum-243 target by calcium-48 projectiles. After a run lasting four months, they have produced twenty-two nuclei of element 115. The high yield was achieved by optimizing beam energy and detection performance as well as by increasing beam dose. This is an improvement of more than twice the previous yields of such nuclei. Apart from the technical feat of the substantially enhanced production of this superheavy nucleus, the results from this experiment provide a wealth of information on how such superheavy elements decay, with consequences for nuclear structure physics and stability in general. – Abhishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

String Theory

Out of Bounds

Read More »

Next Synopsis

Materials Science

Lowered Resistance Under Pressure

Read More »

Related Articles

Synopsis: Nuclear Spectroscopy Reveals New Shapes of Excited Nuclei
Nuclear Physics

Synopsis: Nuclear Spectroscopy Reveals New Shapes of Excited Nuclei

Cadmium nuclei take on multiple shapes at low excitation energies, a discovery that overturns a long-accepted tenet of nuclear structure. Read More »

Synopsis: Seeking Stardust in the Snow  
Astrophysics

Synopsis: Seeking Stardust in the Snow  

Iron-60 found in fresh Antarctic snow was forged in nearby supernovae and could help deduce the structure and origin of interstellar dust clouds.   Read More »

Synopsis: Tin Gets Kinky
Nuclear Physics

Synopsis: Tin Gets Kinky

The observation that tin nuclei suddenly increase in size when the number of neutrons they contain reaches a “magic” number helps test models of nucleon interactions. Read More »

More Articles