Synopsis: The More the Merrier…and Heavier

Experimentalists make considerable progress towards sustained production of superheavy elements.

Where does the periodic table end? Extending the periodic table to the artificially synthesized superheavy elements is one of the most fascinating avenues of nuclear research, offering sensitive tests of theories of nuclear physics and chemistry (see 9 April 2010 Viewpoint). The difficulties to overcome are not only that the experiments last several months, but also that at the end, they typically produce few, of the order of two or three, superheavy nuclei.

Writing in Physical Review Letters, Yuri Oganessian at the Joint Institute for Nuclear Research, Russia, and collaborators report on results from the bombardment of a radioactive americum-243 target by calcium-48 projectiles. After a run lasting four months, they have produced twenty-two nuclei of element 115. The high yield was achieved by optimizing beam energy and detection performance as well as by increasing beam dose. This is an improvement of more than twice the previous yields of such nuclei. Apart from the technical feat of the substantially enhanced production of this superheavy nucleus, the results from this experiment provide a wealth of information on how such superheavy elements decay, with consequences for nuclear structure physics and stability in general. – Abhishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

String Theory

Out of Bounds

Read More »

Next Synopsis

Materials Science

Lowered Resistance Under Pressure

Read More »

Related Articles

Viewpoint: Watching the Hoyle State Fall Apart
Nuclear Physics

Viewpoint: Watching the Hoyle State Fall Apart

Two experiments provide the most precise picture to date of how an excited state of carbon decays into three helium nuclei. Read More »

Synopsis: Strong Force Calculations for Weak Force Reactions
Nuclear Physics

Synopsis: Strong Force Calculations for Weak Force Reactions

Theorists have used lattice-QCD calculations to predict two weak-force-driven reactions—proton fusion and tritium decay. Read More »

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

More Articles