Synopsis

New Recipe for Optics-Friendly Silicon

Physics 5, s5
An algorithm for simulating animal evolution has been adapted to predict a silicon-based material fit for optoelectronics applications.
M. d’Avezac et al., Phys. Rev. Lett. (2012)

Silicon is the darling of the microelectronics industry, but it has an Achilles’ heel: silicon can’t absorb or emit light without the help of phonons. This so-called indirect band gap makes it an inefficient option for light-emitting diodes and solar cells.

Researchers have tried to engineer a direct band gap in silicon by introducing defects or casting it in nanostructure form, but such materials don’t necessarily have an optically active band gap. Writing in Physical Review Letters, Mayeul d’Avezac at the National Renewable Energy Laboratory, Colorado, and his colleagues report numerical predictions that a material consisting of atomically thin layers of silicon and germanium—a superlattice—should have an optically active, direct band gap.

Superlattices of silicon and germanium are known to have direct band gaps that allow weak optical absorption, but to find the optimum mixture of the two materials requires sorting through all possible combinations. For this, D’Avezac et al. adopt an algorithm originally developed in the 1950s to simulate evolutionary random selection. In their case, they combine two parent superlattices into a new and possibly better “offspring”. A superlattice becomes “fitter” as it develops an optical transition, and “mutations” occur by randomly swapping germanium and silicon layers.

According to the team’s simulations, a magic formula of SiGe2Si2Ge2Si (the subscript denotes the number of monolayers) grown on a silicon-germanium alloy and topped with a germanium buffer should be 50 times more efficient at absorbing light than existing silicon-germanium superlattices. In principle, such structures could be prepared with molecular beam epitaxy. – Jessica Thomas


Subject Areas

Semiconductor PhysicsEnergy Research

Related Articles

Testing a New Solar Sandwich
Energy Research

Testing a New Solar Sandwich

By combining the world’s oldest photovoltaic material with today’s most used one, researchers have taken a step toward next-generation solar devices. Read More »

Harness Strain to Harvest Solar Energy
Condensed Matter Physics

Harness Strain to Harvest Solar Energy

The engineering of structural deformations in light-sensitive semiconductors can boost the efficiency of solar cells. Read More »

A Sunny Path to Green Hydrogen
Energy Research

A Sunny Path to Green Hydrogen

A theoretical study of metal oxides identifies potential candidate materials for generating hydrogen fuel from water and sunlight. Read More »

More Articles