Synopsis: Going the Distance

Researchers have measured the distance over which electrons generate photons with a simple mechanical technique, allowing better understanding of how the photons are produced.
Synopsis figure
K. Andersen et al., Phys. Rev. Lett. (2012)

When an energetic electron slams into a material, its energy is partially converted to photons. The resultant photons are called bremsstrahlung (“braking rays”) and have a well-understood energy spectrum. For relativistic electrons, the spectrum is strongly modified by multiple Coulomb scattering: the electron bounces against atoms in the material, and the resulting interference inhibits the emission of low-energy photons. To understand the spectrum, it is essential to know how long the electron needs to travel in the material to generate photons, because the longer the distance, the more bounces the electron experiences. An open question is the formation length for photons emitted this way under different conditions, and how this compares with theory.

Using a rather simple mechanical technique, Kristoffer Andersen of Aarhus University, Denmark, and colleagues of the CERN NA63 collaboration report in Physical Review Letters on measurements of the photon formation length for radiation emitted by electrons. The setup consists of two gold foils separated by a distance of up to 1 millimeter, controlled by a precision micrometer translation stage. The researchers aimed 197GeV electrons at the foils and measured the resultant photon emission spectrum. Photon production begins in the first gold foil, and if the formation length is large enough corresponding to a certain photon energy, continues in the second foil, modified by multiple scattering. Electrons that scatter in both foils generate a peak in the spectrum, whose position depends on the foil separation. From this the group could mechanically determine the length of travel required to generate a photon of given energy. This, in turn, allows comparison of these observations against predictions. For future work, the team proposes replacing the second foil with an intense laser beam, allowing more detailed analysis of the photon spectrum and the multiple scattering corrections. – David Voss


More Features »


More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Fermionic Switch

Read More »

Next Synopsis


Graphene Nanoribbons Zip Up

Read More »

Related Articles

Synopsis: Filling in a Tetraquark’s Profile
Particles and Fields

Synopsis: Filling in a Tetraquark’s Profile

An analysis of electron-positron collision data has determined the spin and parity of a particle thought to consist of four quarks. Read More »

Synopsis: Strong Force Model for Weak Force Reactions
Nuclear Physics

Synopsis: Strong Force Model for Weak Force Reactions

A quark-based model called lattice QCD provides theoretical predictions for two weak-force-driven reactions—proton fusion and tritium decay. Read More »

Synopsis: Scanning Earth’s Interior with Neutrinos

Synopsis: Scanning Earth’s Interior with Neutrinos

Future neutrino experiments may provide tomographic scans of Earth’s interior by viewing solar neutrinos that pass through our planet’s layers.   Read More »

More Articles