Synopsis: Plastic Capacitors

Calculations show that combining polymers can improve their dielectic properties and reveal the atomic rearrangements that make this possible.
Synopsis figure
APS/V. Ranjan et al., Phys. Rev. Lett. (2012)

One of the biggest speed bumps hindering widespread adoption of electric vehicles is energy storage: conventional liquid fuels offer a stored energy per unit weight that is hard to beat. The two current approaches to overcoming this limitation are batteries, which use a chemical reaction to generate electricity, or capacitors, which directly store electricity then discharge it when needed. Capacitors take the lead in applications requiring quick delivery of energy. In essence, capacitors are made from two metal surfaces separated by a dielectric; the capacitance can be improved by bringing the surfaces closer together and by using a separator with high dielectric permittivity.

Computer simulations reported in Physical Review Letters by Vivek Ranjan of North Carolina State University, Raleigh, and colleagues predict that mixing a ferroelectric polymer with a pinch of another polymer could yield a sevenfold increase in stored energy compared to the pure dielectric. The calculations offer insights at the molecular level about how this occurs, showing the polymer atoms collectively rearrange from a nonpolar to polar state. Transition paths uncovered by the work have low activation energies and are accessible at technologically reasonable temperatures. The results point the way toward research into creating such optimized polymer dielectrics, which would make capacitive systems roadworthy for powering electric vehicles. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials ScienceEnergy Research

Previous Synopsis

Nanophysics

Graphene Nanoribbons Zip Up

Read More »

Next Synopsis

Superconductivity

Universal Pairing Symmetry

Read More »

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

More Articles