Synopsis: Lévy Flight of the Bumblebee

Bumblebee flight patterns reveal how the presence of spiders causes bees to modify their foraging strategies.

Bumblebees visit flowers to collect nectar, often visiting multiple flowers in a single patch. Mathematically, a bee’s path has been described by a Lévy flight, which gives flights over long distances a larger weight than in an ordinary random walk model. This description is controversial, however, as bumblebees in the wild are under the constant risk of predators, such as spiders, which likely modifies their foraging behavior.

Writing in Physical Review Letters, Friedrich Lenz at Queen Mary, University of London, UK, and colleagues present a statistical analysis of the velocity distribution of bumblebees. They draw from experiments that track real bumblebees visiting replenishing nectar sources under threat from “artificial spiders,” which can be simulated with a trapping mechanism that holds the bumblebee for two seconds. The team finds that in the absence of spiders, the bumblebees forage more systematically and go directly from flower to flower. When predators are present, however, the bumblebees turn around more often, highlighting a more careful approach to avoid spiders. The analysis indicates that for real foraging, factors such as bumblebee sensory perception, memory, and daylight cycles must also be taken into account in addition to the presence of predators, all of which may cause cause deviation from a Lévy flight pattern. – Daniel Ucko


More Features »


More Announcements »

Subject Areas

Nonlinear DynamicsBiological PhysicsStatistical Physics

Previous Synopsis

Quantum Physics

Quantum Pistons

Read More »

Next Synopsis


Electron Bounce

Read More »

Related Articles

Focus: Explaining the Ruffles of Lotus Leaves
Biological Physics

Focus: Explaining the Ruffles of Lotus Leaves

A new theory accurately predicts a wide range of leaf shapes and explains the differences between dry lotus leaves and those that grow on water. Read More »

Synopsis: Age Determines How a Human Aorta Stretches
Biological Physics

Synopsis: Age Determines How a Human Aorta Stretches

Younger aortas can expand 5 times more than older ones as fluid pumps through them, a finding that could help to design more successful aortic prostheses. Read More »

Focus: <i>Video</i>—Mesmerizing Patterns in Chemical Waves
Interdisciplinary Physics

Focus: Video—Mesmerizing Patterns in Chemical Waves

An unusual configuration of waves in a chemical medium may be useful for understanding heart arrhythmias. Read More »

More Articles