Synopsis: Lévy Flight of the Bumblebee

Bumblebee flight patterns reveal how the presence of spiders causes bees to modify their foraging strategies.

Bumblebees visit flowers to collect nectar, often visiting multiple flowers in a single patch. Mathematically, a bee’s path has been described by a Lévy flight, which gives flights over long distances a larger weight than in an ordinary random walk model. This description is controversial, however, as bumblebees in the wild are under the constant risk of predators, such as spiders, which likely modifies their foraging behavior.

Writing in Physical Review Letters, Friedrich Lenz at Queen Mary, University of London, UK, and colleagues present a statistical analysis of the velocity distribution of bumblebees. They draw from experiments that track real bumblebees visiting replenishing nectar sources under threat from “artificial spiders,” which can be simulated with a trapping mechanism that holds the bumblebee for two seconds. The team finds that in the absence of spiders, the bumblebees forage more systematically and go directly from flower to flower. When predators are present, however, the bumblebees turn around more often, highlighting a more careful approach to avoid spiders. The analysis indicates that for real foraging, factors such as bumblebee sensory perception, memory, and daylight cycles must also be taken into account in addition to the presence of predators, all of which may cause cause deviation from a Lévy flight pattern. – Daniel Ucko


Features

More Features »

Announcements

More Announcements »

Subject Areas

Nonlinear DynamicsBiological PhysicsStatistical Physics

Previous Synopsis

Quantum Physics

Quantum Pistons

Read More »

Next Synopsis

Astrophysics

Electron Bounce

Read More »

Related Articles

Focus: A Physical Model for Neurodegenerative Disease
Biological Physics

Focus: A Physical Model for Neurodegenerative Disease

Computer simulations of the diffusion and aggregation of harmful proteins in the brain reproduce the pattern of damage seen in several neurodegenerative diseases. Read More »

Focus: How to Measure Viscosity Inside Cells
Biological Physics

Focus: How to Measure Viscosity Inside Cells

A noninvasive method measures the viscosity in a cell nucleus by observing the movement and fusion of cellular components. Read More »

Synopsis: Three Pulses for Clearer Ultrasound Images
Biological Physics

Synopsis: Three Pulses for Clearer Ultrasound Images

Researchers have figured out how to improve contrast and reduce background noise in ultrasound images acquired with a technique that uses air-filled protein structures. Read More »

More Articles