Synopsis: Electron Bounce

Experiments show that magnetic waves in a plasma may be effective at controlling energetic electrons.
Synopsis figure
NASA/Tom Bridgman

Solar winds and cosmic rays continually feed charged particles into the radiation belts trapped by Earth’s magnetic field. These high-speed particles pose a hazard to space missions and orbiting satellites, so scientists are considering various schemes to drain or divert them. Now, experiments published in Physical Review Letters show that a type of magnetic wave that propagates in a plasma is unexpectedly effective at scattering trapped, energetic electrons.

Yuhou Wang at the University of California, Los Angeles, and her colleagues discovered the strong wave-particle interaction using the Large Plasma Device, a 20-meter-long cylindrical plasma chamber, housed on the UCLA campus. With microwaves, the researchers heat a fraction of the plasma electrons, which are then trapped in a magnetic potential well, mimicking that of the Earth. In this setup, the electrons, which have energies of up to 3 mega-electron-volts, are detected by x rays that they produce upon colliding with the chamber walls.

The magnetic field lines and surrounding plasma in the chamber are analogous to a massive string that can be “plucked” to produce waves by introducing an oscillating magnetic field. Wang et al. find that when they create such waves, called Alfvén waves, with a small radio-frequency antenna, they see a sizable burst of x rays, suggesting that the waves have strongly scattered the electrons.

For now, Wang et al.’s experiments provide a controlled environment in which to study wave-particle interactions in a plasma that could prove useful for diverting electrons in Earth’s radiation belts. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsPlasma Physics

Previous Synopsis

Nonlinear Dynamics

Lévy Flight of the Bumblebee

Read More »

Next Synopsis

Atomic and Molecular Physics

Molecular Speed Bump

Read More »

Related Articles

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science
Astrophysics

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science

Analyzing its first year of data, the Dark Energy Survey has demonstrated that weak lensing can probe cosmological parameters with a precision comparable to cosmic microwave background observations. Read More »

Focus: Solar Wind Shock Wave Gives Ions a Push
Plasma Physics

Focus: Solar Wind Shock Wave Gives Ions a Push

Measurements made by NASA’s New Horizons spacecraft show that shock waves in the solar wind transfer significant energy to ionized interstellar atoms, confirming a decades-old prediction. Read More »

Synopsis: 2D Maps of Solar Wind
Astrophysics

Synopsis: 2D Maps of Solar Wind

Maps of solar wind velocities derived from satellite images of the Sun’s corona could help researchers improve solar wind models. Read More »

More Articles