Synopsis: Electron Bounce

Experiments show that magnetic waves in a plasma may be effective at controlling energetic electrons.
Synopsis figure
NASA/Tom Bridgman

Solar winds and cosmic rays continually feed charged particles into the radiation belts trapped by Earth’s magnetic field. These high-speed particles pose a hazard to space missions and orbiting satellites, so scientists are considering various schemes to drain or divert them. Now, experiments published in Physical Review Letters show that a type of magnetic wave that propagates in a plasma is unexpectedly effective at scattering trapped, energetic electrons.

Yuhou Wang at the University of California, Los Angeles, and her colleagues discovered the strong wave-particle interaction using the Large Plasma Device, a 20-meter-long cylindrical plasma chamber, housed on the UCLA campus. With microwaves, the researchers heat a fraction of the plasma electrons, which are then trapped in a magnetic potential well, mimicking that of the Earth. In this setup, the electrons, which have energies of up to 3 mega-electron-volts, are detected by x rays that they produce upon colliding with the chamber walls.

The magnetic field lines and surrounding plasma in the chamber are analogous to a massive string that can be “plucked” to produce waves by introducing an oscillating magnetic field. Wang et al. find that when they create such waves, called Alfvén waves, with a small radio-frequency antenna, they see a sizable burst of x rays, suggesting that the waves have strongly scattered the electrons.

For now, Wang et al.’s experiments provide a controlled environment in which to study wave-particle interactions in a plasma that could prove useful for diverting electrons in Earth’s radiation belts. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsPlasma Physics

Previous Synopsis

Nonlinear Dynamics

Lévy Flight of the Bumblebee

Read More »

Next Synopsis

Atomic and Molecular Physics

Molecular Speed Bump

Read More »

Related Articles

Focus: Black Hole as Extreme Particle Accelerator
Astrophysics

Focus: Black Hole as Extreme Particle Accelerator

Large-scale simulations suggest a mechanism by which supermassive black holes could accelerate particles to ultrahigh energies. Read More »

Synopsis: Throwing Dust at Planet Formation
Astrophysics

Synopsis: Throwing Dust at Planet Formation

Astrophysicists dropped beads onto clumps of dust to better understand how planets coalesce from particulates. Read More »

Synopsis: Dark Matter Blowing Like a Hurricane  
Cosmology

Synopsis: Dark Matter Blowing Like a Hurricane  

The dark matter in our stellar neighborhood may be moving at high speed, which might produce a signature that future dark matter searches could detect.   Read More »

More Articles