Synopsis

Getting Under the Neutron Skin

Physics 5, s40
Electron scattering techniques could provide more accurate measures of the distribution of neutrons in heavy nuclei.
APS

Heavy nuclei are believed to have a neutron-rich skin on the surface, and the thickness of this skin may have important implications for the physics of neutron stars.

Now the Lead Radius Experiment (PREx) Collaboration reports, in Physical Review Letters, electron scattering experiments that yield the thickness of the neutron skin in the heavy nucleus lead- 208. Their preliminary results show that the skin’s thickness is about 0.33 millionths of a nanometer.

Obtaining the proton distribution in nuclei with electron scattering techniques is relatively straightforward, but neutrons don’t have an electric charge, so experimentalists have relied on scattering hadrons, such as protons and pions, to measure the neutron distribution. Interpreting the data in these experiments, however, depends on the strong force model chosen to describe the interaction between neutrons and hadrons.

Housed at Jefferson Lab in Newport News, Virginia, PREx takes a different approach by using the small weak-force interaction between electrons and neutrons to measure the neutron skin. In their experiment, a thin lead foil target is bombarded with 1.06 giga-electron-volt electrons, which arrive in alternating time windows with their spins aligned parallel (positive helicity) or antiparallel (negative helicity) to their velocity. It is the difference in scattering between these two helicity states that depends on the distribution of neutrons in lead nuclei.

The error in PREx’s result is roughly half the size of the neutron skin itself, but further experiments, should, according to the authors, reduce the error by another factor of three. – Jessica Thomas


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles