Synopsis: Nuclear Clocks

An updated proposal for a clock based on the excited states of a nucleus could keep time better than existing clocks that use electronic states.

The best atomic clocks approach an accuracy of about a part in 1017, but that’s not good enough for researchers looking for possible tiny drifts in fundamental constants. A newly refined proposal based on nuclear excitations in a single ion could, in principle, do almost 100 times better.

The energy to create an excited nuclear state should be much less sensitive to stray external fields than are the electronic excitations used in the best existing atomic clocks. In particular, in 2003, researchers proposed exploiting a relatively low-energy transition in thorium-229 nuclei, which could be excited with ultraviolet lasers. In Physical Review Letters, Corey Campbell at the Georgia Institute of Technology, Atlanta, and co-workers note that a different transition in the same nucleus should be even less sensitive to external fields.

The team proposes a clock based on a single trapped thorium ion, and analyzes a dozen different effects that could limit its accuracy. The two biggest potential errors are stray electric fields that nudge the ion away from the sweet spot of the trap, and uncertainty about the height of the trap. The gravitational effect of even a 1 millimeter height error would cause a significant frequency shift, according to general relativity. Combining all of the errors, the researchers estimate a timing accuracy of 1.5 parts in 1019, corresponding to a 70-millisecond error over the entire age of the universe. – Don Monroe


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsNuclear Physics

Previous Synopsis

Nonlinear Dynamics

Greed is Good

Read More »

Next Synopsis

Quantum Information

Send in the Clones

Read More »

Related Articles

Synopsis: Making Quantum Computations Behave
Computational Physics

Synopsis: Making Quantum Computations Behave

A new computational method tackles many-body quantum calculations that have defied a suite of existing approaches. Read More »

Synopsis: A Fresh Slice of Electrons Feeds Enhanced X Rays
Optics

Synopsis: A Fresh Slice of Electrons Feeds Enhanced X Rays

A new free-electron-laser configuration emits soft x-ray pulses with record-breaking energies. Read More »

Focus: Laser Bags a Giant Nucleus
Nuclear Physics

Focus: Laser Bags a Giant Nucleus

A laser-based technique provides the most precise measurements to date of nuclear properties for an element above atomic number 100. Read More »

More Articles