Synopsis: Half In, Half Out

New calculations confront the notion that adding impurities to one-dimensional solids called Luttinger liquids necessarily makes them insulators.
Synopsis figure
A. Altland et al., Phys. Rev. Lett. (2012)

In one-dimensional solids, strong Coulomb interactions can make the low-lying excitations look nothing like normal electrons. In this so-called Luttinger liquid, which has been observed in nanotubes, quantum wires, and the edges of quantum Hall systems, the spin and charge of electrons propagate independently and the concept of a Fermi surface, with well-defined electronic states, breaks down. Now, writing in Physical Review Letters, Alexander Altland from the University of Cologne, Germany, and his colleagues present calculations that challenge the usual way of thinking about the effects of impurities on the conductivity of Luttinger liquids.

In a 1992 seminal paper, Kane and Fisher predicted that even a weakly scattering impurity would block a current in a Luttinger liquid; that is, the Luttinger liquid would become an insulator. At finite temperatures, the conductance would follow a power law with an exponent that is a measure of the interaction strength of the Luttinger liquid.

Kane and Fisher’s analysis assumed currents were coherently scattered from the impurity; Altland et al. have extended the earlier model to the case of a Luttinger liquid with an impurity that permits both coherent and incoherent scattering. In this picture, Altland et al. find that carriers are transmitted or reflected with equal probability, a finding that is robust and insensitive to the details of the impurity or coupling to the leads. Their results could be tested by measuring the edge states in a fractional quantum Hall system. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsStrongly Correlated Materials

Previous Synopsis

Nonlinear Dynamics

Telling Left From Right

Read More »

Next Synopsis

Related Articles

Synopsis: Plasmon Thermometers for Silicon
Semiconductor Physics

Synopsis: Plasmon Thermometers for Silicon

Electron oscillations in silicon may be used to map, with nanometer resolution, the temperatures across a silicon device. Read More »

Synopsis: Peering into a Molecular Magnet
Magnetism

Synopsis: Peering into a Molecular Magnet

Researchers characterize the spin couplings in the prototypical single-molecule magnet Mn12 using an advanced neutron scattering technique. Read More »

Synopsis: Magnetic Wand Directs Particles in Microfluidic Device
Fluid Dynamics

Synopsis: Magnetic Wand Directs Particles in Microfluidic Device

Researchers propose a scheme to position, focus, and sort magnetic particles in a microchannel with a magnetic field. Read More »

More Articles