Synopsis

A Noisy Junction

Physics 5, s51
White noise in a nanoscale junction tells us how nonelectronic factors affect conduction.
M. Kumar et al., Phys. Rev. Lett. (2012)

Electrons at the nanoscale behave quite differently from those in the bulk as their wavelength starts to be relevant. As an example, individual molecular and atomic vibrational modes dominate in the differential conductance of nanoscale materials, and the discrete character of the charges manifests itself as white noise (“shot noise”). Experimentalists can study features of the white noise to gather information on transport characteristics in nanoscale junctions and constrictions.

Writing in Physical Review Letters, Manohar Kumar, at Leiden University in the Netherlands, and co-workers present results from a study on a mechanically controlled break junction—a deliberately severed atomic contact between two gold wires. The team looked at an inelastic scattering contribution to shot noise in several configurations of nanowires. The sign of this contribution, which had been predicted but not observed, changes with the magnitude of the transmission through the conduction channel. It is positive for high transmission values but negative for low ones, a property that the authors ascribe to coherent two-electron processes mediated by electron-phonon scattering as well as the Pauli exclusion principle. These results should provide more quantitative answers to how atomic vibrations and electronic noise affect molecular electronics. – Daniel Ucko


Subject Areas

Nanophysics

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

Levitated Nanoresonator Breaks Quality-Factor Record
Nanophysics

Levitated Nanoresonator Breaks Quality-Factor Record

A nanoresonator trapped in ultrahigh vacuum features an exceptionally high quality factor, showing promise for applications in force sensors and macroscopic tests of quantum mechanics.  Read More »

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

More Articles