Synopsis: Prime Numbers in Frozen Territory

The behavior of freezing transitions in glasses is related to the statistical properties of prime numbers.

If prime numbers are the elementary particles of arithmetic, then the Riemann zeta function is one of the key tools for analyzing how they behave. The zeta function, although relatively easy to write down, contains multitudes: it encodes information about the distribution of primes along the number line, and is the centerpiece of unsolved problems in number theory.

Connections between the statistics of primes and physics have been made before, but now, in a paper in Physical Review Letters, Yan Fyodorov of Queen Mary, University of London, UK, and colleagues show a surprising correspondence between freezing in disordered systems, like glasses, and the peaks and valleys of the zeta function.

The energy of a disordered system is like a traveler moving around on a random landscape of hill and valleys. As the temperature is lowered, the traveler bounces from place to place but eventually settles into a local energy minimum, which marks the freezing transition in the glass. Fyodorov et al. show both analytically, and with numerical simulations, that the statistical mechanical properties of the freezing transition correlate with the statistical properties of extrema of the zeta function. Not only might this work guide the way physicists tackle important statistical physics problems, but our understanding of freezing could help mathematicians make progress in attacking some of the grand challenges of number theory. – David Voss


More Features »


More Announcements »

Subject Areas

Interdisciplinary PhysicsStatistical Physics

Previous Synopsis

Nonlinear Dynamics

Science of Slosh

Read More »

Next Synopsis

Interdisciplinary Physics

Force Diagrams on Skis

Read More »

Related Articles

Focus: Drops Falling in Clouds Make More Drops
Fluid Dynamics

Focus: Drops Falling in Clouds Make More Drops

Experiments with a simplified version of the atmosphere show that falling drops seed many smaller droplets in their wake. Read More »

Viewpoint: Squeezed Environment Boosts Engine Performance

Viewpoint: Squeezed Environment Boosts Engine Performance

A tiny engine can surpass the Carnot limit of efficiency when researchers engineer the thermal properties of the environment. Read More »

Synopsis: Subway Stats
Statistical Physics

Synopsis: Subway Stats

A comparison of the arrival-time statistics of New York City’s subway trains indicates that some train lines may be more efficiently run than others. Read More »

More Articles