Synopsis: Shaking Up a Grain-Based Laser

A random laser formed from shaken grains can be partially manipulated by varying the amount of shaking, according to new experiments.
Synopsis figure
V. Folli et al., Phys. Rev. Lett. (2012)

Laser light can be generated from randomly ordered materials, but so far the randomness has been fixed. Now, researchers have produced laser light by shaking a box of grains. Viola Folli of the Sapienza University of Rome, Italy, and her collaborators were able to alter the laser spectrum by varying the shaking intensity. The experiments, described in Physical Review Letters, may open a new realm of mechanically controlled photonic devices.

Random lasers don’t match our cartoon picture of a laser having a long cavity for collimating the beam. Instead, these unorthodox lasers are made of powders, colloids, and other disordered assortments that scatter light multiple times in different directions, while an accompanying gain medium provides the amplification. The scattering elements have typically been too small for mechanical manipulation, but granular materials could offer some “control” over the random configurations. In particular, grains can switch from a solidlike to gaslike state when shaken sufficiently hard.

Folli and her colleagues wanted to explore whether grain dynamics could lead to novel optical effects. They started with millimeter-sized metallic spheres and immersed about 1500 of them in a fluorescent dye (the gain medium). A vibrating plate shook the grains from beneath, while an external laser provided optical stimulation. The emitted light showed a peak at 600 nanometers, which was due to random lasing but controlled by the vibrational motion. In addition, when the shaking reached a certain magnitude, a second peak appeared around 620 nanometers. The authors claim this additional lasing arises from a few grains forming a short-lived cavity within the dynamic system. – Michael Schirber


Features

More Features »

Subject Areas

OpticsSoft Matter

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Turning the Optomechanical Tables

Read More »

Related Articles

Synopsis: Capillary Effect in Grains Explained
Soft Matter

Synopsis: Capillary Effect in Grains Explained

Numerical simulations show that a previously observed capillary-like action in vibrating grain systems is due to convective motion of the grains.   Read More »

Synopsis: Blocking out Starlight
Astrophysics

Synopsis: Blocking out Starlight

A proposed telescope update could enable incoming light from multiple stars to be simultaneously blocked, making it easier to image exoplanets orbiting two or more stars. Read More »

Focus: Self-Spinning Grains Prove Granular Theory
Soft Matter

Focus: Self-Spinning Grains Prove Granular Theory

Measurements of a two-dimensional “gas” made up of particles that spin when shaken bolsters a gas-like theory for granular materials. Read More »

More Articles