Synopsis: Separating Glass and Jamming Transitions

Though often treated similarly, glass and jamming transitions are qualitatively different.
Synopsis figure
A. Ikeda et al., Phys. Rev. Lett. (2012)

When compressed, suspensions of particles change to a solid by going through either a glass or a jamming transition. The volume fraction filled by the particles when solidity sets in is similar for the two cases, but the glass transition originates at equilibrium, whereas the jamming transition—occurring in systems such as foams or granular materials—originates far from equilibrium. Though their rheological properties are closely related in many ways, now a study demonstrates that these transitions are qualitatively different.

Writing in Physical Review Letters, Atsushi Ikeda of Montpellier 2 University and CNRS, France, and collaborators report work on simulated flows of concentrated assemblies of soft repulsive particles at a large volume fraction. They varied the relative strength of thermal fluctuations and viscous dissipation to study the whole range from thermal suspensions that obey Brownian motion to athermal suspensions—relevant to jammed colloids—that do not. Ikeda et al. report that shear viscosities for the thermal state and the jammed state as a function of packing fractions are unrelated, leading them to conclude that, even though they are characterized by similar macroscopic flow behavior, glass and jamming transitions occur over well-separated time and stress scales. The phase diagram they obtain enables separation of the curves that display the flow behavior for glass and jamming transitions, even as the temperature goes down to zero. – Daniel Ucko

Correction (18 July 2012): The original article incorrectly stated that the glass transition occurs at equilibrium. The statement has been corrected to say that it originates from equilibrium.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Soft Matter

Next Synopsis

Nonlinear Dynamics

Capturing Droplets by the Neck

Read More »

Related Articles

Viewpoint: Active-Matter Thermodynamics Under Pressure
Soft Matter

Viewpoint: Active-Matter Thermodynamics Under Pressure

Experiments show that, unlike an ideal gas, an active-matter system comprised of self-propelled disks does not have a well-defined mechanical pressure. Read More »

Viewpoint: Tube Model Under Tension
Soft Matter

Viewpoint: Tube Model Under Tension

Results from a new method of analyzing neutron-scattering data from polymer samples under deformation may challenge the prevailing “tube model” of polymer motion. Read More »

Focus: “Gas Marbles” Store Air in Strong Spheres
Soft Matter

Focus: “Gas Marbles” Store Air in Strong Spheres

A spherical shell made of plastic microspheres can store pressurized gas in a tiny volume and might be used to stabilize foams or to deliver specialized gases. Read More »

More Articles