Synopsis: Turning from Nuclei to Electrons for Dark-Matter Detection

A new analysis shows that it is possible to look for dark-matter particles with mass far below 1 giga-electron-volt by using atomic ionization.

Direct detection experiments of dark matter generally look for products of the interaction of the dark-matter particles with the nuclei of the detector. However, such nuclear recoil signals cannot typically be produced with sufficient strength by dark-matter particles of masses less than about 1 giga-electron-volt (GeV). Recently, Rouven Essig of Stony Brook University, New York, and colleagues suggested that in events in which such low mass dark-matter particles interact with the atomic electrons of the target, rather than off the nuclei, they could ionize the atoms, and this could produce an observable signal.

Now, these theorists, working with two members of the XENON10 Collaboration, have tested this idea by re-examining data previously used by the collaboration to obtain limits on dark-matter particles in the few-GeV region. Where the previous analysis had been looking for nuclear recoils, the new analysis, reported in Physical Review Letters, instead looks for electrons as evidence of ionization, and is able to set limits on dark-matter particles with masses far below 1GeV, the first direct-detection limits in this mass range.

These results are significant in themselves, but perhaps more important is the demonstration of the potential of this technique. Future experiments specifically designed to take advantage of this technique should be able to probe significant new regions in dark-matter parameter space. – Stanley Brown


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Atomic and Molecular Physics

Measuring Many-Body Entanglement

Read More »

Next Synopsis

Related Articles

Synopsis: Wind Gusts Could Explain Gamma-Ray Flares
Astrophysics

Synopsis: Wind Gusts Could Explain Gamma-Ray Flares

A mysterious gamma-ray emission from the Crab Nebula—a giant interstellar cloud of gas—may be due to fluctuations in the wind blown out from the pulsar in the nebula’s center. Read More »

Synopsis: Relativity Survives Scrutiny, Again
Gravitation

Synopsis: Relativity Survives Scrutiny, Again

Two independent studies show no evidence that a fundamental symmetry in relativity, known as Lorentz invariance, breaks down. Read More »

Synopsis: New Constraints on Axion-Gluon Interaction Strength
Particles and Fields

Synopsis: New Constraints on Axion-Gluon Interaction Strength

An analysis of spin-precession data of atoms and neutrons sets some of the tightest limits to date on the strength of interactions between axions and gluons or nucleons. Read More »

More Articles