Synopsis: Turning from Nuclei to Electrons for Dark-Matter Detection

A new analysis shows that it is possible to look for dark-matter particles with mass far below 1 giga-electron-volt by using atomic ionization.

Direct detection experiments of dark matter generally look for products of the interaction of the dark-matter particles with the nuclei of the detector. However, such nuclear recoil signals cannot typically be produced with sufficient strength by dark-matter particles of masses less than about 1 giga-electron-volt (GeV). Recently, Rouven Essig of Stony Brook University, New York, and colleagues suggested that in events in which such low mass dark-matter particles interact with the atomic electrons of the target, rather than off the nuclei, they could ionize the atoms, and this could produce an observable signal.

Now, these theorists, working with two members of the XENON10 Collaboration, have tested this idea by re-examining data previously used by the collaboration to obtain limits on dark-matter particles in the few-GeV region. Where the previous analysis had been looking for nuclear recoils, the new analysis, reported in Physical Review Letters, instead looks for electrons as evidence of ionization, and is able to set limits on dark-matter particles with masses far below 1GeV, the first direct-detection limits in this mass range.

These results are significant in themselves, but perhaps more important is the demonstration of the potential of this technique. Future experiments specifically designed to take advantage of this technique should be able to probe significant new regions in dark-matter parameter space. – Stanley Brown


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Atomic and Molecular Physics

Measuring Many-Body Entanglement

Read More »

Next Synopsis

Related Articles

Synopsis: Self-Interacting Dark Matter Scores Again
Cosmology

Synopsis: Self-Interacting Dark Matter Scores Again

Dark matter that interacts with itself provides a better description of the speeds of stars in galaxies than dark matter that doesn’t self-interact. Read More »

Synopsis: Searching for Neutron Star Gravitational Waves
Astrophysics

Synopsis: Searching for Neutron Star Gravitational Waves

The first run of LIGO and Virgo’s gravitational-wave search shows no evidence of spinning asymmetric neutron stars, but recent upgrades could make the detection possible. Read More »

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

More Articles