Synopsis

Turning from Nuclei to Electrons for Dark-Matter Detection

Physics 5, s105
A new analysis shows that it is possible to look for dark-matter particles with mass far below 1 giga-electron-volt by using atomic ionization.

Direct detection experiments of dark matter generally look for products of the interaction of the dark-matter particles with the nuclei of the detector. However, such nuclear recoil signals cannot typically be produced with sufficient strength by dark-matter particles of masses less than about 1 giga-electron-volt ( GeV). Recently, Rouven Essig of Stony Brook University, New York, and colleagues suggested that in events in which such low mass dark-matter particles interact with the atomic electrons of the target, rather than off the nuclei, they could ionize the atoms, and this could produce an observable signal.

Now, these theorists, working with two members of the XENON10 Collaboration, have tested this idea by re-examining data previously used by the collaboration to obtain limits on dark-matter particles in the few- GeV region. Where the previous analysis had been looking for nuclear recoils, the new analysis, reported in Physical Review Letters, instead looks for electrons as evidence of ionization, and is able to set limits on dark-matter particles with masses far below 1GeV, the first direct-detection limits in this mass range.

These results are significant in themselves, but perhaps more important is the demonstration of the potential of this technique. Future experiments specifically designed to take advantage of this technique should be able to probe significant new regions in dark-matter parameter space. – Stanley Brown


Subject Areas

Particles and FieldsAstrophysicsCosmology

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles