Synopsis: Turning from Nuclei to Electrons for Dark-Matter Detection

A new analysis shows that it is possible to look for dark-matter particles with mass far below 1 giga-electron-volt by using atomic ionization.

Direct detection experiments of dark matter generally look for products of the interaction of the dark-matter particles with the nuclei of the detector. However, such nuclear recoil signals cannot typically be produced with sufficient strength by dark-matter particles of masses less than about 1 giga-electron-volt (GeV). Recently, Rouven Essig of Stony Brook University, New York, and colleagues suggested that in events in which such low mass dark-matter particles interact with the atomic electrons of the target, rather than off the nuclei, they could ionize the atoms, and this could produce an observable signal.

Now, these theorists, working with two members of the XENON10 Collaboration, have tested this idea by re-examining data previously used by the collaboration to obtain limits on dark-matter particles in the few-GeV region. Where the previous analysis had been looking for nuclear recoils, the new analysis, reported in Physical Review Letters, instead looks for electrons as evidence of ionization, and is able to set limits on dark-matter particles with masses far below 1GeV, the first direct-detection limits in this mass range.

These results are significant in themselves, but perhaps more important is the demonstration of the potential of this technique. Future experiments specifically designed to take advantage of this technique should be able to probe significant new regions in dark-matter parameter space. – Stanley Brown


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and FieldsAstrophysicsCosmology

Previous Synopsis

Atomic and Molecular Physics

Measuring Many-Body Entanglement

Read More »

Next Synopsis

Related Articles

Synopsis: Laser Stars Under the Lens
Astrophysics

Synopsis: Laser Stars Under the Lens

Raman scattering could contaminate astronomical observations that use artificial, laser-generated “stars” to correct for the effect of atmospheric turbulence. Read More »

Viewpoint: Getting to the Bottom of an Antineutrino Anomaly
Particles and Fields

Viewpoint: Getting to the Bottom of an Antineutrino Anomaly

The Daya Bay Collaboration reports that sterile neutrinos probably aren’t behind a puzzling deficit in detected antineutrinos at nuclear reactors. Read More »

Synopsis: LIGO Picks Up on the Third Ring
Gravitation

Synopsis: LIGO Picks Up on the Third Ring

The LIGO collaboration reports its third detection of gravitational waves coming from the merger of two black holes. Read More »

More Articles