Synopsis

Drumming to the Beat of the Vacuum

Physics 5, s103
A novel measurement of the Casimir force may help settle a long-standing debate over how to deal with a certain type of vacuum fluctuation.
D. Garcia-Sanchez et al., Phys. Rev. Lett. (2012)

The Casimir force arises because of quantum fluctuations of the electromagnetic field in the space between two conducting plates. This leads to a radiation pressure pushing inward on the plates. The Casimir force is well studied, but a debate remains over the contributions from low-frequency fluctuations. A new experimental technique reported in Physical Review Letters reduces uncertainties about the contributions to fluctuations from surface effects by replacing one of the solid plates with a thin conducting membrane.

The calculation of the Casimir force depends on the permittivity (i.e., the electric field response) of the conductors, of which there are two competing models. The Drude model predicts that low-frequency fluctuations play no role in the Casimir force, whereas the plasma model assumes they do. Experiments with small plate separations seem to agree with the plasma model, whereas larger separations suggest the Drude model is correct.

Daniel Garcia-Sanchez and his colleagues at Yale University devised a new experiment that bridges both small and large separations ( 100 nm to 2 microns). Their innovation is a gold-covered membrane of silicon nitride that substitutes for one conductor. The team vibrated this membrane while bringing a second conductor (a gold-covered sphere) closer to it. Observed shifts in the vibrational frequency of the membrane were due to the Casimir force, but also due to an electrostatic force coming from electrical potential differences on the membrane surface. The team corrected for this background by mapping the surface potential and thus arrived at a clean Casimir force measurement consistent with the Drude model. – Michael Schirber

Note added (11 December 2012): An Erratum and a Comment about this paper were published in Physical Review Letters.


Subject Areas

NanophysicsQuantum Physics

Related Articles

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

More Articles