Synopsis: Splitting Matter Waves with Light

A new design for a matter-beam splitter uses crossed lasers to make a “fork in the road” for traveling matter waves.
Synopsis figure
G. L. Gattobigio et al., Phys. Rev. Lett. (2012)

Beam splitters exist for matter waves just as for light waves. However, physicists cannot yet manipulate beams of matter as well as beams of light. A novel matter-beam splitter based on crossed lasers provides new control knobs over the matter waves. As described in Physical Review Letters, the researchers can turn the splitting of a beam on and off by tuning the laser power.

In the last decade, researchers have used various types of splitters to send beams of cold atoms down different paths and then interfere them. The small wavelength of matter waves gives atomic interferometry the potential to probe fundamental questions of gravity and quantum mechanics.

To help realize this potential, Giovanni Luca Gattobigio of the CNRS and the University of Paul Sabatier in Toulouse, France, and his colleagues devised a new matter-beam splitter. Like some previous designs, theirs uses lasers as waveguides, or conduits, to control the path of matter waves. One difference is that this new device works for a range of different beam “temperatures,” which are characterized by the degree of transverse excitations in the beam. The researchers crossed two lasers at an angle of 45 degrees (forming an X) and released a beam of rubidium atoms down one laser arm. By changing the second laser’s power, the team controlled the beam’s behavior at the crossing point. The beam went straight at low power, while it deflected into a different arm at high power. At intermediate power, the beam split into all four arms of the X. Theoretical modeling showed that this splitting was due to chaotic scattering. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Building a Better Atom Trap

Read More »

Related Articles

Synopsis: Fermions Trapped in Boson Gas
Atomic and Molecular Physics

Synopsis: Fermions Trapped in Boson Gas

A Bose-Einstein condensate can act as a stable trap for a gas of fermions. Read More »

Synopsis: Atom Interferometers at Full Tilt
Atomic and Molecular Physics

Synopsis: Atom Interferometers at Full Tilt

An atom interferometer serves as a sensitive tiltmeter that can measure Earth’s tidal deformations. Read More »

Viewpoint: Scattering Atoms Catch the <i>d </i>Wave
Condensed Matter Physics

Viewpoint: Scattering Atoms Catch the d Wave

d-wave interactions like those thought to underlie unconventional superconductivity have been implemented in a cold-atom gas. Read More »

More Articles