Synopsis: Quantum Computers Have a Fit

With the right algorithm, quantum computers could tackle ubiquitous problems such as least-squares fitting of large data sets.

As researchers were snaring the Higgs boson at CERN, the LHC machines were cranking out gigabytes of data each second. Even with the uninteresting bits filtered out, modern large-scale science creates mind-boggling amounts of data, causing standard techniques like curve fitting to run into a brick wall. Quantum computing—harnessing nonlocality and entanglement to make solving really hard problems more efficient—might have the prescription for this headache. In a paper in Physical Review Letters, Nathan Wiebe at the University of Waterloo, Canada, and colleagues propose an algorithm to improve the data analyzer’s best friend, least-squares fitting, on a quantum computer.

The authors built upon earlier theoretical work by Harrow et al. [see Phys. Rev. Lett. 103, 150502 (2009)] investigating a quantum method for finding expectation values of the solutions to systems of linear equations. Wiebe et al. adapt this algorithm to estimate the quality of a least-squares fit to an exponentially large data set (the kind that stymies classical computers) without having to obtain a full solution first and without having to fully characterize the state of the quantum computer (a process called quantum state tomography).

When realistic fault-tolerant quantum computing becomes available, the algorithm of Wiebe et al. could be used to find concise, continuous fitting functions for a given bounded approximation error. From a more general perspective, the result not only applies to one of the most widely used analysis techniques in science, but shows that quantum computing can find use outside of niche applications like prime-number factoring. – David Voss


More Features »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Materials Science

Doing a Crack Job on Aluminum

Read More »

Related Articles

Synopsis: A Dark Side for Qubits
Quantum Information

Synopsis: A Dark Side for Qubits

Dark solitons in a Bose-Einstein condensate could, according to calculations, function as qubits with long lifetimes. Read More »

Viewpoint: Linking Two Quantum Dots with Single Photons

Viewpoint: Linking Two Quantum Dots with Single Photons

Researchers have transferred quantum information from one quantum dot to another dot 5 m away using photonic qubits as the relay. Read More »

Viewpoint: Photonic Hat Trick

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

More Articles