Synopsis: The Certainty of Uncertainty

State of the art quantum measurements show that the original formulation of Heisenberg’s uncertainty principle can be violated.
Synopsis figure
L. A. Rozema et al. Phys. Rev. Lett. (2012)

When first taking quantum mechanics courses, students learn about Heisenberg’s uncertainty principle, which is often presented as a statement about the intrinsic uncertainty that a quantum system must possess. Yet Heisenberg originally formulated his principle in terms of the “observer effect”: a relationship between the precision of a measurement and the disturbance it creates, as when a photon measures an electron’s position. Although the former version is rigorously proven, the latter is less general and—as recently shown—mathematically incorrect. In a paper in Physical Review Letters, Lee Rozema and colleagues at the University of Toronto, Canada, experimentally demonstrate that a measurement can in fact violate Heisenberg’s original precision-disturbance relationship.

If the observer affects the observed, how can one even make such a measurement of the disturbance of a measurement? Rozema et al. use a procedure called “weak” quantum measurement: if one can probe a quantum system by means of a vanishingly small interaction, information about the initial state can be squeezed out with little or no disturbance. The authors use this approach to characterize the precision and disturbance of a measurement of the polarizations of entangled photons. By comparing the initial and final states, they find that the disturbance induced by the measurement is less than Heisenberg’s precision-disturbance relation would require.

While the measurements by Rozema et al. leave untouched Heisenberg‘s principle regarding inherent quantum uncertainty, they expose the pitfalls of its application to measurements’ precision. These results not only provide a demonstration of the degree of precision achievable in weak-measurement techniques, but they also help explore the very foundations of quantum mechanics. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Quantum Physics

An Anyon Detector

Read More »

Next Synopsis

Nonlinear Dynamics

Alphabet Waves

Read More »

Related Articles

Viewpoint: Directly Measuring an Entangled State
Quantum Physics

Viewpoint: Directly Measuring an Entangled State

Researchers have directly measured the components of a nonlocal, entangled wave function, rather than relying on indirect tomographic or reconstructive techniques. Read More »

Viewpoint: Quantum Correlations Take a New Shape
Quantum Information

Viewpoint: Quantum Correlations Take a New Shape

A quantum network with a triangular geometry displays nonclassical correlations that appear to be fundamentally different from those so far revealed through Bell tests. Read More »

Synopsis: How to Shape a Single Photon
Optics

Synopsis: How to Shape a Single Photon

Consistent control of an individual photon’s amplitude and phase inside a cavity is now possible, promising applications in quantum information. Read More »

More Articles