Synopsis: Robust Networks

A network model reveals optimal configurations for withstanding random failure or targeted attacks.
Synopsis figure
T. P. Peixoto and S. Bornholdt, Phys. Rev. Lett. (2012)

As man-made networks, from Facebook to the power grid, are increasingly gaining importance, it is crucial that we construct them to be as reliable as possible. In a paper in Physical Review Letters, Tiago Peixoto and Stefan Bornholdt at the University of Bremen, Germany, show how we could build a large-scale network that stands up best to random failure or intentional attacks.

The authors analyze the conditions under which, in a highly interdependent network, a problem in a small section could expand to the entire network and lead to widespread failure. To do this, they borrow the tools of percolation theory (which describes the movement of liquids through porous media) and use it to develop a model that describes networks as ensembles of discrete “blocks” of connected and interdependent nodes. With this model, they determine the network topologies most robust against random failure (which can occur at any node) and those that are robust against targeted attacks (which are directed at the most connected nodes).

The research shows that networks with a highly linked core connected to a periphery are most robust to random failures. This may explain why similar core-periphery topologies have emerged in many real systems, from the internet to gene-regulation networks. Instead, randomly connected, noncentralized topologies turn out to be the best protection against targeted attacks. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Interdisciplinary PhysicsComplex Systems

Previous Synopsis

Mechanics

Folding on the Curve

Read More »

Next Synopsis

Metamaterials

Nanoparticles in Hiding

Read More »

Related Articles

Viewpoint: Language Boundaries Driven by Surface Tension
Interdisciplinary Physics

Viewpoint: Language Boundaries Driven by Surface Tension

A new model of language evolution assumes that changes in the spatial boundaries between dialects are controlled by a surface tension effect. Read More »

Synopsis: Pinpointing Ebbs and Flows of Commuter Traffic
Interdisciplinary Physics

Synopsis: Pinpointing Ebbs and Flows of Commuter Traffic

Vulnerabilities in a city’s public transport system are identified through a network analysis that accounts for the number of passengers and vehicles at any given time. Read More »

Focus: Imaging with Your Wi-Fi Hotspot
Interdisciplinary Physics

Focus: Imaging with Your Wi-Fi Hotspot

The Wi-Fi signals that provide internet access can also produce images of the transmitter’s 3D surroundings, even through walls. Read More »

More Articles