Synopsis

Beyond Shake and Bake

Physics 5, s142
Quantum calculations are a valuable predictive tool for designing better alloys.
T. E. Jones et al., Phys. Rev. Lett. (2012)

For much of its history, materials science has relied on trial, error, and a well-stocked chemical cabinet to discover new substances and their properties, but growing computer power has lately boosted the role of computational methods in this pursuit. Researchers now use numerical tools ranging from first-principles calculations of atomic structure to simulations of metal collapse in a car crash. In a paper in Physical Review Letters, Travis Jones at the Colorado School of Mines, Golden, and colleagues report on their use of state-of-the-art quantum calculations and advanced visualization techniques to find new alloys that improve upon the mechanical properties of high-strength steel.

One of the more important quantities controlling a material’s mechanical properties is called the ideal work of separation, which is the minimum energy required to create two new surfaces from the bulk. Although difficult to measure in the lab, researchers have in the past computed this by means of density-functional theory. Jones et al. coupled computer visualization to a developing theory known as QTAIM (quantum theory of atoms in molecules) to bring more predictive power to the problem. With this approach they can characterize the distribution of charge density in a material and calculate the work of separation by analyzing how this distribution affects bond strengths and energies.

Using this method, the research team calculated the properties of steels strengthened with ceramic additives such as titanium carbide. Their observations point to a structure-property relation in which the number of electrons in second-nearest-neighbor iron bonds controls the work of separation, which they confirmed by looking at typical alloys for a range of conventional additives like nickel. This in turn should allow a priori design of recipes for stronger and tougher steel. – David Voss


Subject Areas

Materials Science

Related Articles

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Another Twist in the Understanding of Moiré Materials
Materials Science

Another Twist in the Understanding of Moiré Materials

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems. Read More »

Testing a New Solar Sandwich
Energy Research

Testing a New Solar Sandwich

By combining the world’s oldest photovoltaic material with today’s most used one, researchers have taken a step toward next-generation solar devices. Read More »

More Articles