Synopsis: Solar Down Time

A theoretical model of sunspots shows that their occasional disappearance may be due to a combination of fluctuations in the Sun’s polar magnetic field and outer layer flows.
Synopsis figure
NASA/Solar Dynamics Laboratory

Our Sun takes a break every half-millennium or so from its usual cycle of sunspot activity. These so-called “grand minima” may influence the Earth’s climate, as evidenced by a cold spell during the Maunder minimum (1645-1715). Scientists would therefore like to know more about the physics underlying these sunspot variations. A new theoretical analysis assumes that grand minima originate from fluctuations of the Sun’s magnetic field and circulation in its outer layers. The model, reported in Physical Review Letters, correctly matches the estimated occurrence of minima in the past.

A sunspot is a temporary dark region on the Sun’s surface, which results from a concentration of magnetic flux. Astronomical observations show that a drop in sunspot numbers comes with a decrease in solar brightness and solar flare counts. Typically, the number of sunspots falls and rises in an 11-year cycle, but sometimes sunspots disappear for several decades at a time. Studies of atmospheric isotopes estimate that our Sun experienced 27 grand minima in the last 11,000 years.

Previous work suggested that a grand minimum may be triggered by weakening in the Sun’s magnetic field and circulation. To study this further, Arnab Choudhuri and Bidya Karak of the Indian Institute of Science in Bangalore, India, started with a solar dynamo model that reproduces much of sunspot behavior. They then introduced observationally-inspired random fluctuations in both the amplitude of the polar magnetic field and the speed of meridional flows in the Sun’s outer layers. The model was consistent with data, predicting 24 to 30 grand minima over 11,000 years. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Astrophysics

Previous Synopsis

Biological Physics

Protein Shells Take a Strength Test

Read More »

Next Synopsis

Related Articles

Synopsis: A Reionization Filter for the Cosmic Microwave Background
Cosmology

Synopsis: A Reionization Filter for the Cosmic Microwave Background

A new method of analyzing cosmic microwave background data could isolate signatures from the so-called reionization period that occurred a few hundred million years after the big bang. Read More »

Synopsis: LIGO’s Black Hole Got the Boot
Astrophysics

Synopsis: LIGO’s Black Hole Got the Boot

An analysis of data from LIGO’s second gravitational-wave event indicates that a supernova can impart a strong kick to the black hole it creates. Read More »

Synopsis: Tackling the Small-Scale Crisis
Cosmology

Synopsis: Tackling the Small-Scale Crisis

Precise measurement of the cosmic microwave background could solve a problem of current cosmological models known as the small-scale crisis. Read More »

More Articles