Synopsis

Cosmological Hat Trick

Physics 5, s182
Three major drawbacks to the ΛCDM dark matter model of the universe may be ameliorated if a proposed particle couples to dark matter and to neutrinos.

In their attempts to puzzle out the 95% of the universe that isn’t common old ordinary stuff, astrophysicists appear to be settling on a model for the unseen mass and energy called ΛCDM (shorthand for cosmological constant plus cold dark matter). The model has met with success for large-scale structures in the universe, but suffers from three shortcomings on smaller scales: observations show fewer faint, small galaxy-forming regions than predicted; ΛCDM predicts a different internal galactic distribution of dark matter than observed; and the largest and densest satellites of the Milky Way predicted by simulations haven’t been observed. Writing in Physical Review Letters, Laura van den Aarssen at the University of Hamburg, Germany, and colleagues propose a new kind of long-range interaction among dark matter particles that addresses all three problems in one go.

The core of the authors’ hypothesis is their suggestion that an as yet unknown lightweight particle, which mediates the long-range interaction, couples to both dark matter particles and neutrinos. Such particles would induce velocity-dependent interactions between dark matter particles that, in the authors’ modeling, takes away more dark matter at galactic cores, consistent with observations, and resolves the questions of how smaller galaxies could form.

While much more work is needed to flesh out this framework, the authors say that the hypothesized particles may decay into neutrinos with energy around 1 tera-electron-volt, and if so, this signature might be detectable with future observations of the Milky Way by the IceCube neutrino detector at the South Pole. – David Voss


Subject Areas

Particles and FieldsAstrophysicsCosmology

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles