Synopsis

Downsizing Optical Lattices

Physics 5, s186
Field patterns produced near nanoparticles could allow closely spaced traps for ultracold atoms.
M. Gullans et al., Phys. Rev. Lett. (2012)

Optical lattices formed by interfering laser beams provide a highly controllable test bench for trapping many atoms at once and studying their interactions. Because of diffraction, however, the wavelength of the trapping light limits how close the atoms can get to one another, and thus the achievable atomic density. As reported in Physical Review Letters, Michael Gullans, at Harvard University, and colleagues propose a way to overcome this limitation with subwavelength confinement of light produced by nanoplasmonic structures.

In the near field of a nanoparticle (i.e., at the distance of less than about one wavelength of a propagating wave), collective electron oscillations called plasmons can concentrate the electromagnetic field in regions much smaller than its wavelength. Gullans et al. show theoretically that the interference of an incident wave with the dipolar field it induces in a metallic particle creates a trapping region along the polarization direction of the field. In the case of silver nanospheres, slightly tuning the incident light to the blue side of an atomic resonance in rubidium should cause an atom to cling to the sphere. Arrays of nanoparticles could therefore act as anchors for an ordered lattice of ultracold atoms.

The authors suggest that with their proposed method, lattice spacings could be reduced by about an order of magnitude, from 500 nanometers down to less than 60 nanometers. Should experimentalists realize such nanoplasmonic lattices in the lab, the increased atomic density would allow the exploration of new regimes of dense, ultracold quantum matter. – David Voss


Subject Areas

Atomic and Molecular PhysicsPlasmonics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles