Synopsis: Alice and Bob Go Nonlinear

Time-reversing the signals generated by a nonlinear element could form the basis of a new secure communications protocol in the midst of chaotic waves.

Nonlinear devices added to linear systems often yield new, useful phenomena, an example being frequency-doubling crystals that combine two laser photons to create a photon of twice the energy. In a paper in Physical Review Letters, Matthew Frazier and colleagues at the University of Maryland, College Park, report experiments in which they put a nonlinear frequency-multiplying device into a chaotic bath of electromagnetic waves and find signal propagation effects that might launch a new kind of secure communication.

The equations that describe electromagnetic waves are linear and time invariant, which means that signals propagating forward in time can be recorded, played backwards (i.e., time reversed), and sent back along the incoming path, returning exactly to their source. Frazier et al. built a metal box with ports to couple microwave radiation in and out. Two of the ports are equipped with conventional linear antennas, but the third is an antenna incorporating a nonlinear element (in this case a diode). A scattering device in the box creates a chaotic electromagnetic environment to mask the signals and ensure complex signal paths.

A signal sent into one linear port of the chamber will bounce around and eventually hit the nonlinear antenna, which responds by producing signals at new frequencies. These new frequencies are then recorded at the other linear port, and then played backwards into the box, whereupon they reverse their propagation and return precisely focused onto the nonlinear element, regardless of how complex the path is. Among the applications envisaged by the authors is a communications network in which messages broadcast by Alice in a wide area are picked up by Bob with a nonlinear receiver at a secret location (not even known to Alice). Only that location will receive the reversed playback; Eve the eavesdropper will only detect garbled signals from the chaotic wave environment. – David Voss


Features

More Features »

Subject Areas

Interdisciplinary PhysicsComplex SystemsElectronics

Previous Synopsis

Fluid Dynamics

Convection Speeds Up on a Slant

Read More »

Next Synopsis

Complex Systems

Synchronized Rolling

Read More »

Related Articles

Focus: Imaging with Your Wi-Fi Hotspot
Interdisciplinary Physics

Focus: Imaging with Your Wi-Fi Hotspot

The Wi-Fi signals that provide internet access can also produce images of the transmitter’s 3D surroundings, even through walls. Read More »

Focus: 3D Images 10 Times Faster
Interdisciplinary Physics

Focus: 3D Images 10 Times Faster

3D x-ray phase-contrast images take as little as one-tenth the usual time to acquire using a technique that halves the number of required “photos.” Read More »

Synopsis: Mimicking the Brain with Superconductors and LEDs
Optoelectronics

Synopsis: Mimicking the Brain with Superconductors and LEDs

A proposed computer made of superconductors communicating via light could carry out more operations than a human brain while using less energy.   Read More »

More Articles