Synopsis: Bouncing in a Spacetime Ripple

Microparticles suspended in an optical cavity may be a new way to detect gravity waves.
Synopsis figure
A. Arvanitaki and A. Geraci, Phys. Rev. Lett. (2013)

Everything tells us that moving masses should emit gravitational waves, but despite strong indirect evidence, there have been no direct detections. Large international collaborations are now using highly sensitive laser interferometers to look for gravity waves, requiring heroic measures to reduce noise and raise sensitivity. These detectors, however, are optimized for wave frequencies below 10 kilohertz, causing them to miss potentially important events. In a paper in Physical Review Letters, Asimina Arvanitaki at Stanford University, California, and Andrew Geraci at the University of Nevada in Reno propose using microparticles trapped in an optical cavity as a new kind of high-frequency gravitational wave detector.

The authors consider the theoretical possibility of using a small sphere or disk suspended by radiation forces to detect gravitational waves. They propose trapping this tiny particle in a standing wave produced by an optical cavity and reducing its motion to a minimum with laser cooling. A passing gravitational wave would then produce a small ripple in spacetime causing a change in mirror spacing, shifting the location where the particle is trapped. The altered position of the particle is detected using light reflected from the cavity. For a 75-micron particle in a 100-meter-long cavity, Arvanitaki and Geraci estimate that they can exceed the sensitivity of the larger gravitational wave observatories for wave frequencies around 100 kilohertz.

In their paper, the authors frankly acknowledge that few gravitational wave sources are expected to exist at this frequency, but Arvanitaki and Geraci do consider one exotic possibility. Theoretically predicted particles called axions might form a cloud around a black hole, and these in turn might annihilate to produce gravitons that create gravitational waves at the right frequency for detection by levitating microspheres. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsParticles and FieldsGravitation

Previous Synopsis

Magnetism

Surface Protection

Read More »

Next Synopsis

Quantum Information

Hitting Reset After a Quantum Measurement

Read More »

Related Articles

Viewpoint: Spinning Black Holes May Grow Hair
Gravitation

Viewpoint: Spinning Black Holes May Grow Hair

A spinning black hole may lose up to 9% of its mass by spontaneously growing “hair” in the form of excitations of a hypothetical particle field with a tiny mass. Read More »

Synopsis: Proton Loses Weight
Particles and Fields

Synopsis: Proton Loses Weight

The most precise measurement to date of the proton mass finds a value that is 3 standard deviations lower than previous estimates. Read More »

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

More Articles