Synopsis: Why the Solar Wind Blows Hot and Cold

A new model shows that the nonuniform heating of ions in the solar wind may be explained by resonant interactions with a particular type of plasma wave.
Synopsis figure
Miloslav Druckmüller/Brno University of Technology, Peter Aniol, Vojtech Rusin

One of the biggest puzzles of the solar wind is why certain ions in the wind are hotter than others. The temperature of helium ions, for example, is on average 5 times higher than that of hydrogen ions. Now, writing in Physical Review Letters, Justin Kasper of the Harvard-Smithsonian Center for Astrophysics, Massachusetts, and collaborators present a model that demonstrates how certain plasma waves, called ion cyclotron waves, will preferentially heat heavier ions travelling below a threshold velocity.

The solar wind consists of electrons, protons (hydrogen ions), and a small smattering of heavier ions. This plasma is extremely thin, with roughly 40 ions per teaspoon at Earth’s orbital distance from the Sun. And yet, the wind is over 100,000 kelvin, as deduced from the proton velocity distribution. The cause of these high temperatures is unknown, but likely candidates include a variety of different plasma waves, which are fluctuations in the distribution of charged particles.

Ion cyclotron waves are plasma waves that correspond to oscillations in the circular motion of ions around a magnetic field. Previous work has considered how these waves might heat the solar wind, but the model presented in this work demonstrates how this heating can be selective at an atomic level. Their model is based on the realization that heat transfer from waves to ions is strongest when an ion can resonantly interact with waves moving both forward and backward with respect to the wind. This excludes both hydrogen ions and fast-moving ions that outrun the forward-moving waves. The theory’s predictions for ion temperatures and temperature anisotropies (hotter ions moving perpendicular to the magnetic field) match a compilation of 17 years of data from the Wind spacecraft. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsPlasma Physics

Previous Synopsis

Next Synopsis

Biological Physics

A Double Power Law Powers Brain

Read More »

Related Articles

Viewpoint: Supernova Study Dampens Dark Matter Theory
Astrophysics

Viewpoint: Supernova Study Dampens Dark Matter Theory

A search for lensing of supernovae by black holes comes up empty, leading researchers to conclude that black holes cannot account for all dark matter. Read More »

Controversy Continues over Black Holes as Dark Matter
Astrophysics

Controversy Continues over Black Holes as Dark Matter

Following recent gravitational-wave detections, black holes have emerged as a possible, though contentious, dark matter candidate. Read More »

Synopsis: Solar Gamma Rays Behaving Strangely
Astrophysics

Synopsis: Solar Gamma Rays Behaving Strangely

Nearly 10 years of Fermi telescope images show unexpected changes in the numbers and energies of gamma-ray photons coming from the Sun. Read More »

More Articles