Synopsis: Fluid-Induced Orbital Motion in Zero Gravity

Shaken or stirred? Suspended beads stir themselves when shaken in a new experiment using magnetic levitation.
Synopsis figure
R. J. A. Hill/University of Nottingham

Particles floating “weightless” in a fluid would appear free to go where they please. However, observations show that suspended particles will self-organize because of fluid-mediated forces. A new experiment described in Physical Review Letters explores the hydrodynamic interactions between two small beads levitating in a gravity-canceling magnetic field. When the system is shaken, the beads come together in a mutual attraction and—as the shaking increases—begin an orbital dance. The authors believe this opens the door to further studies of particle-fluid mixtures in the absence of gravity.

On Earth, particles suspended in a fluid are largely confined to the depth where buoyancy and gravity forces balance out, so studies of their self-organization have often been limited to two dimensions. In real zero gravity, as on the International Space Station, suspended particles can assemble in three dimensions, but very few experiments have explored what influence hydrodynamic forces will have in this environment.

To recreate real zero gravity on Earth, Hector Pacheco-Martinez and colleagues from the University of Nottingham, UK, use a strongly varying magnetic field that can levitate small particles—as shown in previous studies. Inside their 17-tesla magnetic system, the team placed a fluid-filled cell with two identical, millimeter-sized spheres. To induce fluid flow, they shook the cell up and down at a rate of around 20 hertz. In response, the beads moved towards each other until they were side-by-side touching. As the amplitude of the shaking increased, the team observed the beads orbiting around each other in the horizontal plane (perpendicular to the shaking direction). The researchers also performed computer simulations that showed the orbiting arises from flow vortices sprouting out from the contact point between beads. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Next Synopsis

Fluid Dynamics

Stripping Away Confusion

Read More »

Related Articles

Focus: Why Sediments Are So Uniform
Fluid Dynamics

Focus: Why Sediments Are So Uniform

A new theory suggests that sedimenting particles of irregular shape will drift horizontally as they fall, a result that may resolve a long-standing puzzle. Read More »

Focus: Making Rogue Waves with Wind and Water
Fluid Dynamics

Focus: Making Rogue Waves with Wind and Water

Wind-generated waves in a ring-shaped water tank can spontaneously grow into single behemoth waves, mimicking a poorly understood ocean phenomenon.   Read More »

Synopsis: Superfluid Storm at a Surface
Fluid Dynamics

Synopsis: Superfluid Storm at a Surface

Numerical simulations indicate that boundary layers, normally the preserve of conventional fluids flowing past solid surfaces, can also arise in superfluids.   Read More »

More Articles