Synopsis: Keeping Track of Nonconservative Forces

A modified form of Lagrange’s equations of motion will make it easier to account for energy loss in a mechanical system.
Synopsis figure
NASA

Students learning classical mechanics cut their teeth on some rather artificial sounding problems, like pendulums swinging in vacuum or a bead sliding down a frictionless metal hoop. But in “real-world” calculations, dissipation that comes from nonconservative forces, such as friction, can’t be ignored. In Physical Review Letters, Chad Galley of the California Institute of Technology in Pasadena reports a new way to account for dissipation in the Lagrange equations of motion, a capability that was previously possible only for limited types of forces.

The widely used Lagrange equations can be derived from Hamilton’s principle, which says that a moving particle will follow the trajectory that minimizes the difference between its kinetic and potential energy, called the path of least action. The equations predict the same path for an object under a force as that found with Newton’s laws, but are often easier to solve because they depend on the energy of a system, rather than the vector forces acting upon it. Although ubiquitous in physics, the principle has a well-known limitation: it can’t account for the irreversible effects of energy loss. Galley found a way to modify the principle with a term that captures the energy entering or leaving the system. He has already used the formalism to determine the reaction force on two inspiraling massive bodies (like neutron stars or black holes) that comes from the emission of gravity waves (Physical Review D). The same approach could be applied to finding the motion of an object in a viscous medium or the energy dissipated by a quantum system. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

GravitationMechanics

Previous Synopsis

Next Synopsis

Biological Physics

Wind-up DNA

Read More »

Related Articles

Viewpoint: Acoustic Experiments without Borders
Interdisciplinary Physics

Viewpoint: Acoustic Experiments without Borders

A new approach to laboratory acoustic experiments could remove unwanted effects caused by the reflections of acoustic waves from the boundaries of the experimental setup. Read More »

Synopsis: Ideal Mergers for Measuring Cosmic Expansion
Cosmology

Synopsis: Ideal Mergers for Measuring Cosmic Expansion

Among gravitational-wave sources, the merger of a neutron star and a black hole may provide the most precise way to measure how fast the Universe is expanding. Read More »

Synopsis: Beat Strong, My Liquid Gallium Heart
Fluid Dynamics

Synopsis: Beat Strong, My Liquid Gallium Heart

Applying a current across a drop of liquid gallium induces an oscillatory motion reminiscent of that of a beating heart. Read More »

More Articles