Synopsis: Condensate in a Can

Cylindrically shaped trap allows Bose-Einstein condensate to move freely in all three directions.
Synopsis figure
A. Gaunt et al., Phys. Rev. Lett. (2013)

By trapping and cooling clouds of atoms, physicists can control and explore exotic states of matter. The most dramatic example, long predicted but only demonstrated in 1995, is the Bose-Einstein condensate, in which many of the atoms in a cloud share a single quantum-mechanical state. In most experiments to date, however, atoms are attracted by a bowl-shaped potential whose strength varies across the cloud, which makes the condensate more complicated to analyze.

Teams have previously trapped atoms in long, uniform filaments, but in Physical Review Letters, Alexander Gaunt and his collaborators at the University of Cambridge, UK, describe a container that lets the atoms move freely in three dimensions. The researchers first cool a gas of a million or so rubidium atoms in a traditional trap to about a ten-millionth of a degree above absolute zero. They then turn on a green laser to create walls that gently repel the atoms. Part of the repulsive beam is shaped into a cylindrical tube surrounding the atoms, while two other parts form sheets that cap the ends of the tube. The effect of gravity is also canceled, using a small, spatially varying magnetic field.

The researchers confirmed the uniformity of the cloud by measuring the speeds with which atoms fly away when the trap is removed and the temperature at which cooling produces a Bose-Einstein condensate. The uniform trap should make it easier to compare results with theoretical calculations, and also to more accurately mimic other uniform quantum states of matter that are hard to study directly. – Don Monroe


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: An Expanding Universe in the Lab
Atomic and Molecular Physics

Synopsis: An Expanding Universe in the Lab

The rapid expansion of a Bose-Einstein condensate can mimic the expansion of the Universe. Read More »

Synopsis: ARPES with Cold Atoms
Atomic and Molecular Physics

Synopsis: ARPES with Cold Atoms

A numerical study outlines how to perform measurements on cold atoms that mimic angle-resolved photoemission spectroscopy studies of solids. Read More »

Viewpoint: A Boost in Precision for Optical Atomic Clocks
Atomic and Molecular Physics

Viewpoint: A Boost in Precision for Optical Atomic Clocks

Researchers set a new record in atomic clock precision by using spectroscopic imaging to reduce frequency variations in a strontium optical lattice clock. Read More »

More Articles