Synopsis: Nanostructures Put a Spin on Light

Plasmonic nanostructures can be used to generate optical vortices with varying amounts of angular momentum.
Synopsis figure
Y. Gorodetski et al., Phys. Rev. Lett. (2013)

Optical vortices are beams of light that rotate as they propagate, drawing a helical phase front in space that resembles a corkscrew. These beams carry an angular momentum that can spin microscopic objects or drive micromachines. Now, Yuri Gorodetski, at the University of Strasbourg and CNRS in France, and colleagues demonstrate a new way to imprint angular momentum onto a light beam that takes advantage of collective electron excitations (surface plasmons) in specially shaped subwavelength nanostructures. As described in Physical Review Letters, the devices consist of thin helices of metal that transfer their chirality onto the light.

The authors milled either spirals or concentric grooves onto opposite sides of a metallic membrane. Guided by a theoretical model, they chose combinations of shaped nanostructures that would sustain surface plasmons with desired symmetries. When light hit the membrane, it excited plasmons that, in turn, sculpted the wave front of the transmitted beam. By changing the geometry of the nanostructures, the authors were able to generate beams carrying different quanta of angular momentum, adjustable from -8 to +8 (measured in units of ħ).

This scheme has the advantage that it generates optical vortices that propagate in the far field. And, being only a few microns in size, the nanostructures are compact. The devices could be built into high-bit rate optical communications platforms in which beams with different angular momenta are transmitted on a shared channel – Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsNanophysics

Previous Synopsis

Nanophysics

Desirable Defects

Read More »

Next Synopsis

Atomic and Molecular Physics

Condensate in a Can

Read More »

Related Articles

Synopsis: Atoms Feel New Force
Atomic and Molecular Physics

Synopsis: Atoms Feel New Force

Laser light can stretch and squeeze a whole cloud of atoms with a collective force. Read More »

Focus: Modeling Imperfections Boosts Microscope Precision
Optics

Focus: Modeling Imperfections Boosts Microscope Precision

A theoretical model of light spreading and scattering improves precision of position and size measurements made with an optical microscope by as much as 100 times. Read More »

Synopsis: Attosecond X-Ray Flashes
Optics

Synopsis: Attosecond X-Ray Flashes

X-ray free-electron lasers have been used to generate single spikes of hard x rays that are only 200 attoseconds long. Read More »

More Articles