Synopsis

Black-Hole Hunting with a Gas Cloud

Physics 6, s78
A moving gas cloud might help probe a population of black holes believed to inhabit the center of our galaxy.
ESO/MPE/M.Schartmann/J.Major

Astronomers estimate that the center of our Galaxy is teeming with black holes. Detecting these highly compact objects is challenging, but an opportunity may arrive at the end of the summer in the form of a large gas cloud passing through the galactic center. If this cloud encounters a black hole in its path, the hole will devour some of the material, releasing x rays in the process. A new paper in Physical Review Letters calculates the odds of us seeing such an event.

Black holes and neutron stars can form when a massive star runs out of nuclear fuel and collapses onto itself. Over time, some of these objects migrate towards the center of the galaxy. Previous work has predicted that as many as 20,000 black holes—and a similar number of neutron stars—may be hiding within a few light years of the galactic center.

One way to spot these burnt-out objects is to douse them with fresh “fuel” that lights up as it accretes onto the surface. Imre Bartos of Columbia University, New York, and colleagues consider the likelihood of such fireworks occurring inside a gas cloud, named G 2, which is currently swooping around the galactic center, with a closest approach scheduled for September 2013. The researchers calculate that this cloud, which is roughly three times wider than the orbit of Pluto, may encounter around ten black holes along its path. However, the x-ray signal from these events is probably detectable only in some special cases. Notably, current instruments could potentially observe G 2 collisions with intermediate mass black holes, which are an unconfirmed class of objects 1000 times more massive than normal black holes. – Michael Schirber


Subject Areas

AstrophysicsGravitation

Related Articles

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

Exploring the Black Hole Population with an Open Mind
Gravitation

Exploring the Black Hole Population with an Open Mind

A new model describes the population of black hole binaries without assumptions on the shape of their distribution—a capability that could boost the discovery potential of gravitational-wave observations. Read More »

Characterizing the “Knee” of High-Energy Cosmic Rays
Particles and Fields

Characterizing the “Knee” of High-Energy Cosmic Rays

Using observations made with an array of thousands of particle detectors, researchers have uncovered an important clue about cosmic rays that originate from outside of our Galaxy. Read More »

More Articles