Synopsis

New Atomic Trios Follow the Rules

Physics 6, s105
Experiments show that a wider range of atoms can follow universal rules in forming three-body groupings called Efimov states.

In the 1970s, Vitaly Efimov found a remarkable thing. He calculated that the neutrons in tritium could form three-body conglomerations even if any two neutrons had no interest in each other. These Efimov states remained merely a theoretical idea until 35 years later when researchers found experimental evidence for them, not with nucleons, but with ultracold atoms. But questions remain about how universal this phenomenon is—do these states depend on special properties of the atoms involved or other microscopic details? In a paper in Physical Review Letters, Sanjukta Roy at the University of Florence, Italy, and colleagues present experimental evidence for Efimov states in potassium-39, which has very different atomic character than atoms used previously.

Efimov states are purely quantum mechanical beasts. The force that holds them together can be fine tuned with an effect known as the Feshbach resonance—a rare situation in which colliding atoms have just the right kinetic energy to reach a bound state. Typically, atoms like cesium have very broad ranges for the resonance, but potassium resonances are extremely narrow, limiting the chances for Efimov threesomes to form. Theory said that the only way it could happen was if some special interactions could glue the atoms together.

In their experiments, Roy et al. tested the properties of Efimov states formed using seven different ultranarrow Feshbach resonances in potassium and found that they indeed exhibit the same universal properties as Efimov states of other atoms. According to Roy et al., it is now the theorists’ turn to figure out why potassium does this and whether it opens a new range of atomic species that can form Efimov triplets. – David Voss


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles