Synopsis: Catching Dark Matter Red Handed

The elusive dark matter candidates called axions might set off alarm bells in a superconducting detector.

Like a classic detective story, the saga of dark matter continues to revolve around circumstantial evidence. Astronomical observations point to unseen mass, but we don’t know what it is. Several experiments are underway to catch and identify the culprit (or culprits) directly, but these often require massive detectors seeking faint fingerprints. But a benchtop approach may have something to offer, as Christian Beck of the University of London, UK, reports in Physical Review Letters. He proposes that one dark matter candidate called the axion may leave clues behind in a relatively small superconducting device.

Axions can take on a number of disguises. For example, photons in a strong magnetic field might decay into axions, which then could pass through a barrier and re-emerge as photons again. This quick-change act has been sought in so-called “light passing through walls” experiments. Beck looks at the inverse process—perhaps dark matter axions could turn into photons while passing through a detector and then re-emerge as axions. If so, these elusive particles might leave behind electromagnetic clues.

Beck’s hypothesis is that a device called a Josephson junction could register the passage of such photons. These junctions consist of a superconducting sandwich enclosing a nonsuperconductor, and typically they find application as ultrasensitive magnetic-field detectors. Beck calculates that axionic photons could produce a very small but entirely measurable signal. What’s more, he suggests that an anomalous signal recorded in 2004 fits the description of axions scurrying through a detector. If borne out by more experiments, the Josephson-junction approach may offer another powerful tool in the dark matter detectives’ kit. – David Voss


More Features »


More Announcements »

Subject Areas

SuperconductivityParticles and Fields

Previous Synopsis

Next Synopsis

Chemical Physics

Filling Holes in Molecular Dynamics

Read More »

Related Articles

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

Synopsis: Dark Photon Conjecture Fizzles
Particles and Fields

Synopsis: Dark Photon Conjecture Fizzles

The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon’s magnetic moment. Read More »

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

More Articles