Synopsis

Cyberattack by Breaking and Entering

Physics 7, s21
A new study shows that messages sent by secure quantum communication methods can be intercepted and faked by attacks that damage system components.

Quantum cryptography promises secure communication by alerting users when their data has been spied on. But an eavesdropper might be able to bypass this security by tampering not with the data, but with the data-reading equipment. An example of this strong-arm tactic is reported in Physical Review Letters, in which high-powered laser light is used to damage photo-detectors, thus allowing a fake signal to be swapped into the communication line.

A common way for two parties, call them Alice and Bob, to share sensitive information is with a random encryption key. The problem is how to send the key without having it intercepted by an eavesdropper, Eve. One solution is quantum key distribution, in which Alice and Bob share, for example, entangled photon pairs. If Eve intercepts the transmission, she’ll irrevocably destroy the entanglement. Alice and Bob can recognize such a security breach by comparing a subset of their separate photon measurements.

However, Alice and Bob have to allow for a certain amount of errors, or mismatches, between their two measurements due to unavoidable imperfections in their equipment. Audun Nystad Bugge of the Norwegian University of Science and Technology in Trondheim, Norway, and colleagues realized that a change in severity of equipment imperfections could open the door to hacking. In tests, the researchers showed that high-powered laser illumination could partly cripple a commonly used photodiode. If Eve mounted such a laser attack on Bob’s optical system, she could then intercept Alice’s transmission and replace it with a well-crafted fake signal that Bob’s damaged system could no longer identify as phony. To counter this threat, the authors propose more frequent instrument verification procedures. – Michael Schirber


Subject Areas

Quantum Information

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles