Synopsis: Gluons Chip in for Proton Spin

A new analysis of high-energy data shows that gluons may provide some of the proton’s missing spin.
Synopsis figure
Brookhaven National Laboratory

The proton has a spin that comes from its constituent quarks and gluons. Experiments in the 1980s found—unexpectedly—that the contribution from the intrinsic spins of the quarks was small. This so-called “proton spin crisis” remains unresolved, but a new comprehensive analysis of proton scattering data, reported in Physical Review Letters, finds the first clear evidence that the gluon spin polarization is not zero, suggesting that gluons may have a significant role in the spin of the proton.

The proton is a spin 1/2 particle made up of three quarks held together by gluons that carry the strong force. The quarks have spin 1/2, so physicists originally assumed that two of the quarks were in opposite alignment (cancelling their spin), leaving one unpaired quark to give the proton spin. However, measurements of muon-proton collisions found only a quarter of the proton’s spin comes from quark spins. The rest has to come from gluon spins and/or the orbital motion of quarks and gluons inside the proton.

To determine the contribution from gluons, which have spin 1, physicists measure the probability that a gluon with a particular momentum is aligned, or polarized, with respect to the proton spin. Earlier observations of proton-proton collisions at the Relativistic Heavy Ion Collider (RHIC) found the gluon polarization was close to zero for moderate momenta values. However, using more recent RHIC results, Daniel de Florian of the University of Buenos Aires, Argentina, and his colleagues find a nonzero gluon polarization. More data is still needed at low momentum, but the current best fit suggests that as much as half of the proton’s spin comes from gluon spins. — Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Metamaterials

Sound Switch

Read More »

Related Articles

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

Synopsis: Dark Photon Conjecture Fizzles
Particles and Fields

Synopsis: Dark Photon Conjecture Fizzles

The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon’s magnetic moment. Read More »

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

More Articles