Synopsis: Blowing Bubbles on the Nanoscale

Scientists have now developed a new controlled method to superheat liquids and induce the formation of bubbles in a nanoscale container.

Whether they form in ice-cold champagne or hot molten iron, bubbles represent a nucleation phenomenon that (in the case of the hot iron) can lead to a phase transition from a liquid to a vapor. Understanding how the bubble nucleation is affected by confinement could be useful for applications in chemistry, microfluidics, and electronics, as well as fundamental studies of phase transitions. Jene Golovchenko, at Harvard University, and collaborators now report a way to reproducibly create bubbles in liquid confined within a solid-state nanopore—the smallest container in which bubble formation has been observed.

Solid-state nanopores are tiny holes punctured into an insulating membrane. Golovchenko and his colleagues immersed a silicon-nitride membrane containing a nanopore in a sodium-chloride solution and applied a modest voltage across the membrane to drive an ionic current through the pore. The current rapidly heated the liquid in the nanopore to temperatures 200C above its normal boiling point, causing single bubbles of vapor to homogeneously nucleate at the center of the pore.

The researchers used both electronic and optical probes to monitor the bubbles’ nucleation, growth, and collapse. The bubbles were excited in streams, with each bubble lasting around 16 nanoseconds before the next formed 120 nanoseconds later, consistent with models of how heat drives bubble formation on the nanoscale. Inducing bubble nucleation in a controlled manner may be useful for applications such as building bubble “lenses” to bend light and achieve super-resolution imaging. – Katherine Kornei


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Atomic and Molecular Physics

Simple Molecules for Accurate Clocks

Read More »

Next Synopsis

Atomic and Molecular Physics

Bose-Einstein Condensates for Gamma-Ray Lasers

Read More »

Related Articles

Focus: <i>Video</i>—Physics of Oil Recovery
Fluid Dynamics

Focus: Video—Physics of Oil Recovery

Experiments mimicking a common oil drilling technique, in which fluid is forced into an oil-filled, porous medium, have uncovered four different flow patterns. Read More »

Synopsis: Magnetic Wand Directs Particles in Microfluidic Device
Fluid Dynamics

Synopsis: Magnetic Wand Directs Particles in Microfluidic Device

Researchers propose a scheme to position, focus, and sort magnetic particles in a microchannel with a magnetic field. Read More »

Focus: <i>Video</i>—Fluid Video Contest Winners
Fluid Dynamics

Focus: Video—Fluid Video Contest Winners

Swimming starfish larvae, dripping paint, and swirling gas jets are featured in the APS Division of Fluid Dynamics’ winning videos. Read More »

More Articles