An experiment with fast-moving ions verifies relativistic time dilation to a new level of precision, placing constraints on certain quantum gravity theories.

Special relativity predicts that a twin in a high-speed rocket, as viewed by her Earth-bound sister, will have a slower-ticking clock. A precise test of this time dilation, first performed in 1938, involves observing the frequency shift—or “ticking” change—in the electronic transitions of fast-moving ions. An update of this type of experiment using lithium ions has now verified special relativity’s prediction with unprecedented accuracy—a result that provides additional constraints on quantum gravity models.

Relativistic time dilation derives from Lorentz invariance: a physical measurement should be independent of the orientation or speed of the lab’s reference frame. As fundamental as Lorentz invariance might sound, certain quantum gravity theories, such as string theory, predict its violation at a very small level. Physicists have therefore devised a whole host of Lorentz violation tests, one of which involves measuring time dilation.

To carry out such a test, Benjamin Botermann of Johannes Gutenberg-University, Germany, and his colleagues looked for the relativistic Doppler shift in lithium ions accelerated to a third of the speed of light at the Experimental Storage Ring in Damstadt, Germany. The team stimulated two separate transitions in the ions using two lasers propagating in opposite directions with respect to the ion motion. The experiment effectively measures the shift in the laser frequencies relative to what these transition frequencies are for ions at rest. The combination of two frequency shifts eliminates uncertain parameters and allows the team to validate the time dilation prediction to a few parts per billion, improving on previous limits. The result complements other Lorentz violation tests that use higher precision atomic clocks but much slower relative velocities.

Benjamin Botermann, Dennis Bing, Christopher Geppert, Gerald Gwinner, Theodor W. Hänsch, Gerhard Huber, Sergei Karpuk, Andreas Krieger, Thomas Kühl, Wilfried Nörtershäuser, Christian Novotny, Sascha Reinhardt, Rodolfo Sánchez, Dirk Schwalm, Thomas Stöhlker, Andreas Wolf, and Guido Saathoff

Experiments show that calories from different food types are equivalent and that the laws of thermodynamics apply to human metabolism, despite claims to the contrary.

Prize recognizes Arthur Ashkin, Gérard Mourou, and Donna Strickland for developing laser tools that have led to new biophysics experiments and medical technologies.

Cavity-mediated interactions can force two Bose-Einstein condensates into one of two mutually exclusive states, potentially allowing for quantum simulation of spin frustration. Read More »

Researchers predict the existence of three new long-lived signatures of gravitational waves, as part of a unified mathematical framework for identifying such effects. Read More »