Synopsis: More Dark Matter Hints from Cosmic Rays?

A particle detector onboard the International Space Station has revealed differences between the spectrum of cosmic-ray positrons and electrons, which might be a hint of dark matter annihilation processes.
Synopsis figure

Excitement still surrounds a possible hint of dark matter in an unexpected excess of cosmic-ray antielectrons (positrons) relative to electrons. A new set of data from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station confirms the positron excess and provides the most accurate measurement to date of the shape of both the electron and positron spectra. The analysis reveals that the positron flux is significantly different from the electron flux above 30 GeV in energy, which suggests that positrons and electrons have a different origin.

Cosmic rays are predominantly protons and other nuclei, but electrons and positrons make up part of the mix. Standard astrophysical models of interstellar particle collisions predict that, in cosmic rays, the fraction of positrons relative to electrons should decrease with energy. However, recent observations from satellites (e.g., PAMELA and Fermi) and from AMS have shown that the positron fraction actually increases with energy.

The AMS experiment, which has a large permanent magnet that allows particle discrimination, has been collecting data since May 2011. Out of 41 billion detection events, the AMS collaboration has identified 580,000 positrons and 9.2 million electrons (50% more than in their previous data release, see 3 April 2013 Viewpoint). Thanks to the additional data, they were able to extend their measurements of the positron flux up to 500 GeV and, similarly, of the electron flux up to 700 GeV. The high-precision data reveal that both spectra change their slope at around 30 GeV but behave differently towards higher energies: the positron flux drops off much more slowly than the electron flux. One possible explanation for this spectral difference is that the positrons are being created in annihilations of dark matter particles. The authors say data at higher energy will be needed to confirm a dark matter origin.

This research is published in Physical Review Letters.

–Michael Schirber


More Features »


More Announcements »

Subject Areas

AstrophysicsCosmologyParticles and Fields

Previous Synopsis

Biological Physics

Patchy Particles without the Patches

Read More »

Next Synopsis

Related Articles

Viewpoint: Neutron Star Merger Seen and Heard

Viewpoint: Neutron Star Merger Seen and Heard

For the first time, researchers have detected both light and gravitational waves from the same event in space. Read More »

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

Synopsis: Dark Photon Conjecture Fizzles
Particles and Fields

Synopsis: Dark Photon Conjecture Fizzles

The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon’s magnetic moment. Read More »

More Articles