Synopsis: Searching for Sterile Neutrinos

The Daya Bay Reactor Neutrino Experiment has placed stringent limits on a hypothetical fourth neutrino.
Synopsis figure
Roy Kaltschmidt/Lawrence Berkeley National Laboratory

An indispensable piece of the standard model of particle physics is its three neutrino flavors (electron, muon, and tau), which are responsible for mediating the weak interaction. The Daya Bay Reactor Neutrino Experiment in China has reported a search for a conjectured fourth type of neutrino—dubbed a “sterile” neutrino, as it cannot participate in the weak interaction. While no trace of the particle was seen, the experiment has placed some of the most stringent limits to date on its mass and mixing with other neutrino flavors.

Neutrinos can morph between the three available flavors as they travel through space through so-called neutrino flavor oscillations, whose probability depends on a set of three parameters called mixing angles. To probe such oscillations, the Daya Bay Collaboration uses six electron antineutrino detectors located at distances ranging from a few hundred to almost two thousand meters from six nuclear reactors. The reactors produce copious amounts of electron antineutrinos, and if such antineutrinos convert into a different flavor before they reach one of the detectors, the observed shortfall indicates neutrino oscillations.

Daya Bay’s capabilities led to the remarkable discovery of a larger than expected standard-model mixing angle, θ13, governing the rate of electron neutrino conversion to other flavors (see 23 April 2012 Viewpoint), which shook the world of particle physics in 2012. Through the same type of experiment, Daya Bay has now set new limits on the hypothetical sterile neutrino’s mass and mixing with the three known flavors of the standard model through a new mixing angle θ14. The result will aid scientists constructing better neutrino models and may have consequences beyond particle physics, as sterile neutrinos have been a popular dark matter candidate.

This research is published in Physical Review Letters.

–Kevin Dusling


More Features »


More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Slow Down to Take a Better Spectrum

Read More »

Next Synopsis

Interdisciplinary Physics

Stopping the Spread

Read More »

Related Articles

Synopsis: Space Measurements of Secondary Cosmic Rays

Synopsis: Space Measurements of Secondary Cosmic Rays

New data from the International Space Station shed light on how secondary cosmic rays propagate through space. Read More »

Synopsis: Top Quark in Nuclear Collisions
Particles and Fields

Synopsis: Top Quark in Nuclear Collisions

The top quark—previously seen in proton collisions—has now been identified in collisions between protons and lead nuclei. Read More »

Synopsis: Minimum Mass of Magnetic Monopoles
Particles and Fields

Synopsis: Minimum Mass of Magnetic Monopoles

A new analysis places some of the tightest bounds yet on the mass that magnetic monopoles should have if they exist. Read More »

More Articles