Synopsis: How Oxygen Kindles Fireflies

X-ray images of the light-emitting organs in fireflies clarify the mechanism by which oxygen controls the insects’ luminescence.

To communicate and find mates, fireflies produce light flashes through a luminescence process whose chemistry is well known: in the presence of oxygen, an enzyme acts on the compound luciferin (Latin for “light-bringer”), triggering an oxidation reaction that is accompanied by light emission. Determining the mechanism that regulates the oxygen supply has been difficult because the tracheal network that carries the gas to the light-emitting organs, known as photocites, has features as small as 100 nanometers (nm), finer than the resolving power of most microscopes. Now, Yeukuang Hwu at the Academia Sinica and the National Cheng Kung University, Taiwan, and co-workers have used tomographic and microscopy techniques with 20-nm resolution to image the insects’ organs and derive oxygen flux estimates that support a specific supply mechanism.

The researchers designed their experiment to test two leading hypothesis for the oxygen supply mechanism. The first revolves around the firefly’s production of nitric oxide (NO) inside the photocites: before a flash, the gas soaks the mitochondria—organelles that, fed by oxygen, control energy production in cells— suppressing their activity and leaving extra oxygen available for bioluminescence. The second conjecture proposes that circulating fluid in the tracheal network rises or ebbs to control oxygen. The authors’ experiments, carried out at Taiwan’s synchrotron light source, provided evidence for the first theory: x-ray images of the tracheal system in live insects showed no fluid inside the tracheal system. By measuring the tracheal geometries with high resolution, the researchers were able to estimate how much gas could diffuse from the tracheal network to tissues, yielding values consistent with the NO hypothesis.

This research is published in Physical Review Letters.

–Matteo Rini


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Particles and Fields

Searching for Millicharged Particles

Read More »

Next Synopsis

Quantum Physics

Work in the Quantum World

Read More »

Related Articles

Focus: <i>Video</i>—Swimming Snails Use Insect-like Flapping
Fluid Dynamics

Focus: Video—Swimming Snails Use Insect-like Flapping

The unusual wing flapping of submerged “sea butterflies” is similar to that of birds and insects and may provide signs of climate stress. Read More »

Synopsis: Collective Dynamics from Individual Random Walks
Biological Physics

Synopsis: Collective Dynamics from Individual Random Walks

The jerky, random motion of bacteria has now been reproduced using artificial microswimmers, yielding collective behaviors similar to those of real-world bacterial swarms.      Read More »

Synopsis: A Biological Cell As a Chemical Sensor
Biological Physics

Synopsis: A Biological Cell As a Chemical Sensor

A new theoretical model predicts a fundamental limit to how finely attuned a cell can be to its biochemical surroundings. Read More »

More Articles