Synopsis: Critical Markets

Financial markets can behave like critical systems in which small perturbations have an anomalously high impact on trading prices.

In financial markets, trading an asset induces a perturbation that changes the price of the asset. Traditional economic models assume that price varies linearly with the volume of the trade: small perturbations induce small changes. However real markets can be strongly “nonlinear”: small trades have a disproportionate impact on prices and can sometimes trigger dramatic market responses. Iacopo Mastromatteo and colleagues from Ecole Polytechnique and Capital Fund Management in France, propose a new model that describes markets as interacting particles. The results suggest that markets are “critical,” i.e., behave like a material on the verge of a phase transition, such as a para-to-ferromagnetic transition where the response of the material to a small magnetic field diverges.

The authors model the trading process as a two-particle system where one type of particle represents orders to sell and the other orders to buy. When buy and sell offers meet at the same price level, particles annihilate. The system is constantly in flux with particles entering and leaving the trading process.

Mastromatteo et al., found that as soon as there is a market imbalance—more bids than asks, or vice versa—the market responds, with the price varying as the square root of the trade volume, i.e., much faster than the linear response expected for most systems. Even vanishingly small imbalances switch the behavior from linear to nonlinear—a sign of criticality. The result might explain what can make financial markets behave like turbulent systems.

This research is published in Physical Review Letters.

–Katherine Wright


More Features »


More Announcements »

Subject Areas

Nonlinear DynamicsInterdisciplinary PhysicsComplex Systems

Previous Synopsis

Atomic and Molecular Physics

Counting Atoms without Disturbance

Read More »

Next Synopsis

Soft Matter

Thinner Stealth Coatings

Read More »

Related Articles

Synopsis: Collective Dynamics from Individual Random Walks
Biological Physics

Synopsis: Collective Dynamics from Individual Random Walks

The jerky, random motion of bacteria has now been reproduced using artificial microswimmers, yielding collective behaviors similar to those of real-world bacterial swarms.      Read More »

Synopsis: Noisy Synchrotron? Machine Learning Has the Answer

Synopsis: Noisy Synchrotron? Machine Learning Has the Answer

Machine-learning algorithms could allow researchers to substantially reduce unwanted fluctuations in the widths of the electron beams produced at synchrotrons. Read More »

Synopsis: Telling Whiskey from Whisky
Fluid Dynamics

Synopsis: Telling Whiskey from Whisky

The evaporation of a drop of American whiskey leaves a characteristic web-like pattern that isn’t observed in Scotch whisky and other distillates. Read More »

More Articles