Synopsis

It’s All in the Sequence

Physics 8, s6
The sequence of amino acids in certain biomolecules could be a factor in ensuring that they remain free of knots.
T. Wüst et al., Phys. Rev. Lett. (2015)

Everyday experience shows that strings easily knot. Preventing this requires careful folding or winding when stowing away. Molecular ropes, like polymer chains, can suffer the same fate, but that is not true for biopolymers like proteins and DNA; despite their complex folded conformations, they rarely get knotted. A new study by Thomas Wüst from the Swiss Federal Institute of Technology (ETH), Zurich, and colleagues suggests the differences in the interactions between different parts of the chain of a protein (due to the sequence of amino acids forming it) is what controls and prevents knotting.

Wüst et al. simulated simplified, coarse-grained proteins made of 500 monomers (“residues”), which were either hydrophobic or polar. The authors compared different types of sequences: homoresidue chains, randomly ordered ones, and chains designed with specific repetition patterns, calculating their various ground-state conformations and checking for knots. They found that the knottiness of the chain depended on the sequence, and they were able to design sequences that were either highly knotted or almost completely knot-free. Sequences that were free of knots typically produced neatly folded, locally ordered structures, with none of the extended loops seen in the knotted sequences.

The proteins and sequences investigated here are much simpler than real proteins, which are made of twenty amino acids, rather than two. However, the authors speculate that sequence could have been a controlling factor in the evolution of proteins, allowing them to evolve towards knot-free conformations that can reliably perform their functions.

This research is published in Physical Review Letters.

–Katherine Wright


Subject Areas

Biological Physics

Related Articles

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

Molecular Lawnmower Drives Itself
Biological Physics

Molecular Lawnmower Drives Itself

A protein-based motor uses a trimming mechanism to move forward across a field of grass-like peptide segments. Read More »

More Articles