Synopsis: Fixing a Million-Year Clock

A better measure of an iron isotope’s half-life may lead to new ways of dating astrophysical events that unfold over millions of years.
Synopsis figure
A. Wallner et al., Phys. Rev. Lett. (2015)

Radioactive iron-60 (60Fe) is produced at the core of large stars and in supernovae, and it has a half-life of roughly a million years, so its abundance can be used to date astrophysical events on a similar time scale. Scientists have, for example, used the small amount of 60Fe deposited in deep-sea crust to trace the history of supernovae near our Solar System, which may have affected Earth’s climate in the past. But the best measures of 60Fe’s half-life—one performed in 1984, the other in 2009—disagree by nearly a factor of 2. Now, a new experiment settles the discrepancy, enabling more astrophysical studies based on the isotope, such as the monitoring of nucleosynthesis in stars.

To derive the half-life of a long-lived isotope, scientists use samples containing a known number of the nuclei and detect how many of them decay per second. In the case of 60Fe, its decays are monitored by detecting the gamma rays emitted by its daughter nucleus, cobalt-60. But the main uncertainty in earlier experiments has been the initial number of decaying 60Fe nuclei. Working with an iron sample extracted from irradiated copper, Anton Wallner, at the Australian National University, and his colleagues used accelerator mass spectrometry to determine the small concentration of 60Fe isotopes. By comparing this number to the concentration of 55Fe, another rare isotope, they were able to “cancel out” some of the systematic errors that plagued earlier experiments and accurately gauge the 60Fe amount. The half-life they find agrees well with the 2009 value; averaging the two together, Wallner et al. report a value of 2.60 million years and a 2% uncertainty.

This research is published in Physical Review Letters.

–Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsNuclear Physics

Previous Synopsis

Plasma Physics

Shocking Pressures

Read More »

Next Synopsis

Electronics

Energetic Flags

Read More »

Related Articles

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science
Astrophysics

Viewpoint: Weak Lensing Becomes a High-Precision Survey Science

Analyzing its first year of data, the Dark Energy Survey has demonstrated that weak lensing can probe cosmological parameters with a precision comparable to cosmic microwave background observations. Read More »

Focus: Solar Wind Shock Wave Gives Ions a Push
Plasma Physics

Focus: Solar Wind Shock Wave Gives Ions a Push

Measurements made by NASA’s New Horizons spacecraft show that shock waves in the solar wind transfer significant energy to ionized interstellar atoms, confirming a decades-old prediction. Read More »

Synopsis: 2D Maps of Solar Wind
Astrophysics

Synopsis: 2D Maps of Solar Wind

Maps of solar wind velocities derived from satellite images of the Sun’s corona could help researchers improve solar wind models. Read More »

More Articles