Synopsis: Shocking Pressures

A two-step scheme for inertial confinement fusion generates gigabar shock pressures in a fuel target.
Synopsis figure
R. Nora et al., Phys. Rev. Lett. (2015)

Inertial confinement fusion (ICF) attempts to initiate nuclear fusion by imploding a spherical pellet of fuel with an array of intense laser beams, generating both the pressure and temperature needed for nuclei to overcome their mutual electrostatic repulsion. In conventional ICF, compression and hot-spot formation occur in a single stage: laser pulses compress the target material, and the resulting shock wave creates a hot spot where fusion occurs.

But decoupling the compression and heating stages can achieve additional thermonuclear gain at less laser power than conventional methods. In a method known as shock ignition, a second shockwave is launched into the pellet toward the end of the compression stage. Timed correctly, the second shock wave will collide with the first after it has recoiled off the target’s center, further increasing the achieved pressures and temperatures. The OMEGA laser facility at the University of Rochester, New York, has now used its 60 ultraviolet lasers to launch shock waves of several hundred megabars, which gets amplified to pressures estimated to exceed 1 gigabar upon propagation to the center of the target.

The primary diagnostic of the OMEGA facility is the measurement of the spectral shape, spatial distribution, and temporal evolution of the emitted x rays. Aided with radiation-hydrodynamic simulations, the researchers were able to infer the shock pressures obtained. The analysis suggests that nonthermal electrons created via laser-plasma instabilities provide a significant contribution to the overall strength of the shock. The results are an encouraging step towards the application of shock ignition strategies at larger facilities like the National Ignition Facility (NIF), although experiments with target sizes comparable to those used at NIF will be needed for reliable extrapolations.

This research is published in Physical Review Letters.

–Kevin Dusling


Features

More Features »

Announcements

More Announcements »

Subject Areas

Plasma PhysicsEnergy Research

Previous Synopsis

Next Synopsis

Astrophysics

Fixing a Million-Year Clock

Read More »

Related Articles

Focus: More Energy from Ocean Waves
Energy Research

Focus: More Energy from Ocean Waves

A new structure concentrates water wave motion and could lead to improved techniques for harvesting this renewable energy resource. Read More »

Synopsis: Magnetic Fields Measured with Negative Muons
Condensed Matter Physics

Synopsis: Magnetic Fields Measured with Negative Muons

A magnetic-field measurement technique that uses negative muons, rather than the usual positive muons, has probed hydrogen diffusion in a hydrogen storage material. Read More »

Focus: Solar Wind Shock Wave Gives Ions a Push
Plasma Physics

Focus: Solar Wind Shock Wave Gives Ions a Push

Measurements made by NASA’s New Horizons spacecraft show that shock waves in the solar wind transfer significant energy to ionized interstellar atoms, confirming a decades-old prediction. Read More »

More Articles