Synopsis: Pulling on a Cell’s Strings

A motor protein called kinesin-8 helps keep a cell’s nucleus centered by controlling the length of the tubular structures that connect it with the cell wall.
Synopsis figure
M. Glunčić et al., Phys. Rev. Lett. (2015)

A cell’s nucleus must be centered as the cell prepares to divide to ensure the symmetric formation of two daughter cells. Tubular structures, or “microtubules,” linked to the nucleus and pushing against the cell’s walls, keep the nucleus positioned by adjusting their lengths, but it’s not clear what mechanism cues them to elongate or shorten. Now, a team led by Nenad Pavin at the University of Zagreb, Croatia, and Iva Tolić at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, has demonstrated with theory and experiments that certain motor proteins, called kinesin-8, improve the accuracy of nuclear centering by controlling the transition from a lengthening to a shortening phase of the tubules.

In the authors’ model, the nucleus’ position is determined by the pushing forces exerted by growing microtubules, which are influenced by kinesin-8 motor proteins: These walk along the microtubules and as they accumulate at the end, they can trigger a switch to a shortening phase by causing the depolymerization of the tubule’s end. The model calculates the resulting distributions of nuclear positions, predicting that the kinesin-8’s overall effect is that of balancing nuclear placement. The authors confirmed their conclusions with a series of experiments on yeast cells: First, they verified that in cells emptied of kinesin-8 the nucleus was less precisely centered (the standard deviation of its position was 70% larger). A second test displaced the nucleus with optical tweezers and found that the time for it to re-center (22 minutes) agreed with their model predictions. The new insights on the centering role of this motor protein may help researchers understand the mechanisms by which other cellular organelles are moved and positioned by microtubule forces.

–Matteo Rini

This research is published in Physical Review Letters.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Superconductivity

Vortices Queue Up in a Nanowire

Read More »

Next Synopsis

Related Articles

Viewpoint: 3D Imaging of Hopping Molecules
Biological Physics

Viewpoint: 3D Imaging of Hopping Molecules

The 3D motion of molecules at a solid-liquid interface is directly imaged for the first time. Read More »

Synopsis: A New Gauge for Age
Biological Physics

Synopsis: A New Gauge for Age

Wound healing experiments suggest that biological aging can be defined in a similar way to physical aging in soft materials like glasses. Read More »

Focus: Probing Cell Squishiness
Mechanics

Focus: Probing Cell Squishiness

A new atomic force microscopy technique can map the elastic properties of living cells. Read More »

More Articles