Synopsis: Targeting Single Qubits

A scheme based on a combination of lasers and microwaves can fully control a single atomic qubit sitting within a large multiqubit array.
Synopsis figure
T. Xia et al., Phys. Rev. Lett. (2015)

Quantum computation is still in its early stages. But as more and more qubits are assembled together in a quantum processor, the challenge becomes that of controlling each individual qubit, while not disturbing the nearby ones. In a new experiment with a two-dimensional array of 49 atomic qubits, researchers have demonstrated full control over single qubits using a combination of two electromagnetic fields—one in the microwave and the other in the visible range.

Atomic systems are considered for future quantum computers because they offer long-term stability. Certain atoms have electronic energy states that can act as the 0 and 1 of a qubit. Light fields can perform basic logic operations, such as turning a 0 into a 1. The problem is that this light often requires a long wavelength, making it hard to focus on just one qubit.

For their qubit system, Mark Saffman and his colleagues from the University of Wisconsin, Madison, loaded cesium atoms into a two-dimensional optical lattice with 3.8-micrometer site-to-site spacing. The cesium atoms have qubit states that respond to 9.2-gigahertz microwaves (whose wavelength is much larger than the qubit spacing). To select a single qubit, the team detuned their microwave emitter away from 9.2 gigahertz and then focused a laser beam (wavelength 459 nanometers) on a single site of their choosing. The laser light induces a Stark shift that alters the atomic energy levels, so that only the chosen qubit responds to the detuned microwaves. This scheme, based on a previously developed targeting technique, offers, for the first time, full control over all the possible logic operations on a single qubit in a two-dimensional array.

This research is published in Physical Review Letters.

–Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationQuantum Physics

Previous Synopsis

Magnetism

Tunable Spin

Read More »

Next Synopsis

Related Articles

Focus: Twisted Light in a Photonic Chip
Optics

Focus: Twisted Light in a Photonic Chip

Light waves capable of storing quantum information can propagate through a photonic chip waveguide and potentially be used for on-chip computation. Read More »

Synopsis: Quantum Entanglement With 10 Billion Atoms
Quantum Physics

Synopsis: Quantum Entanglement With 10 Billion Atoms

Researchers have experimentally demonstrated two cornerstones of quantum physics—entanglement and Bell inequality violations—with two macroscopic mechanical resonators. Read More »

Viewpoint: Record Distance for Quantum Cryptography
Optics

Viewpoint: Record Distance for Quantum Cryptography

An optical-fiber-based quantum cryptography scheme works over a record distance of 421 km and at much faster rates than previous long-distance demonstrations. Read More »

More Articles