Synopsis: Quakes in Neutron Stars

Simulations of the magnetic field of a neutron star show that shear stresses induced by the field are strong enough to fracture the star’s crust.
Synopsis figure
T. S. Wood and R. Hollerbach, Phys. Rev. Lett. (2015)

Neutron stars have the strongest magnetic fields of all stars in the Universe, but little is known about the exact field geometry. Observed sudden jumps in the star’s rotation and gamma-ray flares suggest that the field distribution is more complex than the asymmetric dipole generally assumed. Now, Toby Wood from Newcastle University and Rainer Hollerbach from University of Leeds, both in the UK, have performed 3D simulations to determine how the magnetic field within the star crust develops after the star’s birth.

The magnetic field of a neutron star arises from electric currents flowing within its crust and core. Assuming a spherically symmetric crust, the authors simulated these currents taking into account how they are affected by magnetic forces. The simulations show that the strength of the magnetic field at the equator is an order of magnitude larger than that at the poles, and that the field at the bottom of the crust is stronger than that at the surface.

The results suggest that, at the birth of the star, the structure of the field contains evenly distributed small fluctuations. Over time these fluctuations grow to form structures that then migrate towards the equator, resulting in a high-field ring around the star, while the field elsewhere gets more homogeneous. The high-field ring exerts shear stresses on the charged particles within the crust. Such stresses are sufficient to cause starquakes (fractures of the crust), which originate at the surface and penetrate downwards. The authors found that the concentrated equatorial fields persist over very long time frames, resulting in star quakes up to hundreds of thousands of years after the star is born.

This research is published in Physical Review Letters.

–Katherine Wright


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Quantum Information

Nanofiber Optical Memory

Read More »

Related Articles

Viewpoint: Spinning Black Holes May Grow Hair

Viewpoint: Spinning Black Holes May Grow Hair

A spinning black hole may lose up to 9% of its mass by spontaneously growing “hair” in the form of excitations of a hypothetical particle field with a tiny mass. Read More »

Synopsis: A Reionization Filter for the Cosmic Microwave Background

Synopsis: A Reionization Filter for the Cosmic Microwave Background

A new method of analyzing cosmic microwave background data could isolate signatures from the so-called reionization period that occurred a few hundred million years after the big bang. Read More »

Synopsis: LIGO’s Black Hole Got the Boot

Synopsis: LIGO’s Black Hole Got the Boot

An analysis of data from LIGO’s second gravitational-wave event indicates that a supernova can impart a strong kick to the black hole it creates. Read More »

More Articles