Synopsis: With Heat Comes Current

Researchers have observed spin-dependent thermoelectric currents in superconductors—a finding that could lead to precise cryogenic thermometers.
Synopsis figure
S. Kolenda et al., Phys. Rev. Lett. (2016)

Thermoelectric effects can convert heat into electric currents—a property that can be used for power generation and temperature sensing. Most thermoelectric devices are made of semiconductors, in which thermoelectric conversion is very efficient. Now, scientists have experimentally demonstrated that superconductors can also feature large spin-dependent thermoelectric coefficients when they are combined with ferromagnets. This finding may lead to high-precision thermometers for nanoscale and quantum thermodynamics research.

The Seebeck effect—in which a temperature difference drives a voltage—requires an asymmetry between the conductance of electrons and the conductance of holes. The effect is generally absent in superconductors, since they lack this asymmetry. But Detlef Beckmann of Karlsruhe Institute of Technology, Germany, and his team, following a 2014 theoretical proposal, showed that such asymmetry can be created by combining a superconductor with a ferromagnet. To break the symmetry of electrons and holes, the researchers applied a few-tesla magnetic field to create a spin-dependent energy shift in the charge carriers flowing through the contact between the superconductor and the ferromagnet. They observed a large transport coefficient that exceeded the values observed in most nonsuperconducting metals. The measured thermoelectric current is evidence of the coupling of spin and heat transport, suggesting that superconductors may be used in efficient cryogenic sensors and coolers.

This research is published in Physical Review Letters.

–Katherine Kornei


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Biological Physics

Identifying Whale Dialects

Read More »

Next Synopsis

Soft Matter

Order in Glasses

Read More »

Related Articles

Focus: Germanium Revived from the Spintronics Graveyard

Focus: Germanium Revived from the Spintronics Graveyard

Germanium produces a surprisingly large separation of electron spins in response to electric current—good news for spin-based devices, since germanium is highly compatible with silicon. Read More »

Synopsis: Revealing a Hidden Spin Polarization
Condensed Matter Physics

Synopsis: Revealing a Hidden Spin Polarization

Photoemission spectroscopy has detected two different populations of spin-polarized electrons that are “hidden” within a layered, graphene-like material. Read More »

Synopsis: Flip-Flopping the Bands

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

More Articles